Suppr超能文献

归一化模型预测了基于物体注意的人类视觉皮层中的反应。

The normalization model predicts responses in the human visual cortex during object-based attention.

机构信息

School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Islamic Republic of Iran.

School of Electrical Engineering, University of Tehran, Tehran, Islamic Republic of Iran.

出版信息

Elife. 2023 Apr 26;12:e75726. doi: 10.7554/eLife.75726.

Abstract

Divisive normalization of the neural responses by the activity of the neighboring neurons has been proposed as a fundamental operation in the nervous system based on its success in predicting neural responses recorded in primate electrophysiology studies. Nevertheless, experimental evidence for the existence of this operation in the human brain is still scant. Here, using functional MRI, we examined the role of normalization across the visual hierarchy in the human visual cortex. Using stimuli form the two categories of human bodies and houses, we presented objects in isolation or in clutter and asked participants to attend or ignore the stimuli. Focusing on the primary visual area V1, the object-selective regions LO and pFs, the body-selective region EBA, and the scene-selective region PPA, we first modeled single-voxel responses using a weighted sum, a weighted average, and a normalization model and demonstrated that although the weighted sum and weighted average models also made acceptable predictions in some conditions, the response to multiple stimuli could generally be better described by a model that takes normalization into account. We then determined the observed effects of attention on cortical responses and demonstrated that these effects were predicted by the normalization model, but not by the weighted sum or the weighted average models. Our results thus provide evidence that the normalization model can predict responses to objects across shifts of visual attention, suggesting the role of normalization as a fundamental operation in the human brain.

摘要

邻域神经元活动对神经反应的离散归一化,已被提议作为神经系统的基本操作,其成功预测了灵长类动物电生理学研究中记录的神经反应。然而,在人类大脑中存在这种操作的实验证据仍然很少。在这里,我们使用功能磁共振成像 (fMRI) 研究了归一化在人类视觉皮层中的视觉层次结构中的作用。我们使用人体和房屋这两类刺激物,呈现单独的物体或杂乱的物体,并要求参与者注意或忽略刺激物。我们聚焦于初级视觉区 V1、物体选择性区域 LO 和 pFs、身体选择性区域 EBA 和场景选择性区域 PPA,首先使用加权和、加权平均和归一化模型对单个体素的反应进行建模,并证明虽然加权和和加权平均模型在某些条件下也可以做出可接受的预测,但考虑归一化的模型通常可以更好地描述对多个刺激的反应。然后,我们确定了注意力对皮质反应的观察到的影响,并证明这些影响可以由归一化模型预测,但不能由加权和或加权平均模型预测。我们的结果因此提供了证据,表明归一化模型可以预测在视觉注意力转移时对物体的反应,这表明归一化作为大脑的基本操作的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75f5/10229119/8f367347669a/elife-75726-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验