Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
Chemosphere. 2023 Aug;332:138876. doi: 10.1016/j.chemosphere.2023.138876. Epub 2023 May 8.
Extracellular polymeric substances (EPS) are highly hydrated matrices produced by bacteria, containing various polymers such as polysaccharides, proteins, lipids, and DNA. Extracellular polymer concentrations, ions, and functional groups provide physical stability to the EPS. Constituents of EPS form the three-dimensional architecture and help acquire nutrition for the bacteria. Structural and functional diversity of the extracellular polymer depends on the specific glycosyltransferases, polymerase and transporter proteins. These enzymes are encoded by specific genes present in operons such as crd, alg, wca, and gum reported in Agrobacterium, Pseudomonas, Enterobacteriaceae, and Xanthomonas. The operons regulate the biosynthesis of extracellular polymers such as curdlan, alginate, colonic acid, and xanthan, respectively. Various functional groups in the EPS, such as carbonyl, hydroxyl, phosphoryl, and amide, provide the sorption site for interaction with environmental pollutants. Hydrophobic interactions and coordinate bonds mainly dominate the binding of EPS with environmental pollutants. EPS binds, emulsifies, and solubilizes the organic compounds, enhancing the degradation process. EPS binds with heavy metals through complexation, surface adsorption, precipitation, and ion exchange mechanisms. The biodegradability efficiency and nontoxicity properties of EPS make it an excellent biopolymer for decontaminating environmental pollutants. This review summarizes an overview of the biosynthetic mechanisms and interaction of the bacterial extracellular polymer with environmental pollutants. Interaction mechanisms of pollutants with EPS and EPS-mediated bioremediation will help develop removal applications. Moreover, understanding the genes responsible for EPS production, and implementation of new genetic methodology can be helpful for the enhanced biosynthesis of EPS to control pollution by sequestrating more environmental pollutants.
细胞外聚合物 (EPS) 是由细菌产生的高度水合基质,含有各种聚合物,如多糖、蛋白质、脂质和 DNA。细胞外聚合物的浓度、离子和官能团为 EPS 提供物理稳定性。EPS 的组成部分形成三维结构,并帮助细菌获取营养。细胞外聚合物的结构和功能多样性取决于特定的糖基转移酶、聚合酶和转运蛋白。这些酶由特定基因编码,这些基因存在于操纵子中,如在根瘤菌、假单胞菌、肠杆菌科和黄单胞菌中报道的 crd、alg、wca 和 gum。操纵子分别调节 curdlan、海藻酸盐、粘酸和黄原胶等细胞外聚合物的生物合成。EPS 中的各种官能团,如羰基、羟基、磷酸基和酰胺基,为与环境污染物相互作用提供了吸附位点。疏水相互作用和配位键主要支配 EPS 与环境污染物的结合。EPS 通过络合、表面吸附、沉淀和离子交换机制与重金属结合。EPS 与有机化合物结合、乳化和溶解,增强了降解过程。EPS 通过络合、表面吸附、沉淀和离子交换机制与重金属结合。EPS 与有机化合物结合、乳化和溶解,增强了降解过程。EPS 通过络合、表面吸附、沉淀和离子交换机制与重金属结合。EPS 与有机化合物结合、乳化和溶解,增强了降解过程。
该综述总结了细菌细胞外聚合物的生物合成机制和与环境污染物的相互作用概述。污染物与 EPS 的相互作用以及 EPS 介导的生物修复机制将有助于开发去除应用。此外,了解负责 EPS 生产的基因,并实施新的遗传方法,有助于通过螯合更多环境污染物来增强 EPS 的生物合成,以控制污染。