Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
NextGen Precision Health, University of Missouri, MO, USA; Department of Physical Medicine and Rehabilitation, University of Missouri, MO, USA.
Neurobiol Dis. 2023 Jun 15;182:106148. doi: 10.1016/j.nbd.2023.106148. Epub 2023 May 8.
Kinesin family member 5A (KIF5A) is an essential, neuron-specific microtubule-associated motor protein responsible for the anterograde axonal transport of various cellular cargos. Loss of function variants in the N-terminal, microtubule-binding domain are associated with hereditary spastic paraplegia and hereditary motor neuropathy. These variants result in a loss of the ability of the mutant protein to process along microtubules. Contrastingly, gain of function splice-site variants in the C-terminal, cargo-binding domain of KIF5A are associated with amyotrophic lateral sclerosis (ALS), a neurodegenerative disease involving death of upper and lower motor neurons, ultimately leading to degradation of the motor unit (MU; an alpha motor neuron and all the myofibers it innervates) and death. These ALS-associated variants result in loss of autoinhibition, increased procession of the mutant protein along microtubules, and altered cargo binding. To study the molecular and cellular consequences of ALS-associated variants in vivo, we introduced the murine homolog of an ALS-associated KIF5A variant into C57BL/6 mice using CRISPR-Cas9 gene editing which produced mutant Kif5a mRNA and protein in neuronal tissues of heterozygous (Kif5a; HET) and homozygous (Kif5a; HOM) mice. HET and HOM mice appeared normal in behavioral and electrophysiological (compound muscle action potential [CMAP] and MU number estimation [MUNE]) outcome measures at one year of age. When subjected to sciatic nerve injury, HET and HOM mice have delayed and incomplete recovery of the MUNE compared to wildtype (WT) mice suggesting an impairment in MU repair. Moreover, aged mutant Kif5a mice (aged two years) had reduced MUNE independent of injury, and exacerbation of the delayed and incomplete recovery after injury compared to aged WT mice. These data suggest that ALS-associated variants may result in an impairment of the MU to respond to biological challenges such as injury and aging, leading to a failure of MU repair and maintenance. In this report, we present the behavioral, electrophysiological and pathological characterization of mice harboring an ALS-associated Kif5a variant to understand the functional consequences of KIF5A C-terminal variants in vivo.
驱动蛋白家族成员 5A(KIF5A)是一种必需的、神经元特异性的微管相关运动蛋白,负责各种细胞货物的顺行轴突运输。N 端微管结合域的功能丧失变异与遗传性痉挛性截瘫和遗传性运动神经病有关。这些变体导致突变蛋白沿微管加工的能力丧失。相比之下,KIF5A 的 C 端货物结合域中的获得功能剪接位点变体与肌萎缩侧索硬化症(ALS)有关,这是一种涉及上运动神经元和下运动神经元死亡的神经退行性疾病,最终导致运动单位(MU;一个运动神经元及其支配的所有肌纤维)降解和死亡。这些与 ALS 相关的变体导致自动抑制丧失、突变蛋白沿微管的行进增加以及货物结合的改变。为了研究体内与 ALS 相关的变体的分子和细胞后果,我们使用 CRISPR-Cas9 基因编辑将与 ALS 相关的 KIF5A 变体的鼠同源物引入 C57BL/6 小鼠中,这导致杂合子(Kif5a; HET)和纯合子(Kif5a; HOM)小鼠的神经元组织中产生突变的 Kif5a mRNA 和蛋白质。在一岁时,HET 和 HOM 小鼠在行为和电生理(复合肌肉动作电位[CMAP]和 MU 数量估计[MUNE])结果测量中表现正常。在坐骨神经损伤后,与野生型(WT)小鼠相比,HET 和 HOM 小鼠的 MUNE 恢复延迟且不完全,表明 MU 修复受损。此外,年老的突变 Kif5a 小鼠(两岁)在没有损伤的情况下 MUNE 减少,并且在损伤后恢复延迟和不完全的情况下加剧,与年老的 WT 小鼠相比。这些数据表明,与 ALS 相关的变体可能导致 MU 无法响应生物挑战(如损伤和衰老),从而导致 MU 修复和维持失败。在本报告中,我们介绍了携带与 ALS 相关的 Kif5a 变体的小鼠的行为、电生理和病理特征,以了解体内 KIF5A C 端变体的功能后果。