Department of Ophthalmology, Queen's Medical Centre, Nottingham, UK.
Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
BMJ Open. 2023 May 10;13(5):e065537. doi: 10.1136/bmjopen-2022-065537.
Infectious keratitis (IK) represents the fifth-leading cause of blindness worldwide. A delay in diagnosis is often a major factor in progression to irreversible visual impairment and/or blindness from IK. The diagnostic challenge is further compounded by low microbiological culture yield, long turnaround time, poorly differentiated clinical features and polymicrobial infections. In recent years, deep learning (DL), a subfield of artificial intelligence, has rapidly emerged as a promising tool in assisting automated medical diagnosis, clinical triage and decision-making, and improving workflow efficiency in healthcare services. Recent studies have demonstrated the potential of using DL in assisting the diagnosis of IK, though the accuracy remains to be elucidated. This systematic review and meta-analysis aims to critically examine and compare the performance of various DL models with clinical experts and/or microbiological results (the current 'gold standard') in diagnosing IK, with an aim to inform practice on the clinical applicability and deployment of DL-assisted diagnostic models.
This review will consider studies that included application of any DL models to diagnose patients with suspected IK, encompassing bacterial, fungal, protozoal and/or viral origins. We will search various electronic databases, including EMBASE and MEDLINE, and trial registries. There will be no restriction to the language and publication date. Two independent reviewers will assess the titles, abstracts and full-text articles. Extracted data will include details of each primary studies, including title, year of publication, authors, types of DL models used, populations, sample size, decision threshold and diagnostic performance. We will perform meta-analyses for the included primary studies when there are sufficient similarities in outcome reporting.
No ethical approval is required for this systematic review. We plan to disseminate our findings via presentation/publication in a peer-reviewed journal.
CRD42022348596.
感染性角膜炎(IK)是全球导致失明的第五大主要原因。诊断的延误往往是导致 IK 进展为不可逆转的视力损害和/或失明的一个主要因素。由于微生物培养产量低、周转时间长、临床特征区分度差和混合感染等原因,诊断面临着更大的挑战。近年来,深度学习(DL)作为人工智能的一个分支,已迅速成为辅助自动医学诊断、临床分诊和决策以及提高医疗服务工作流程效率的有前途的工具。最近的研究表明,DL 有潜力用于辅助 IK 的诊断,尽管准确性仍有待阐明。本系统评价和荟萃分析旨在批判性地检查和比较各种 DL 模型与临床专家和/或微生物学结果(目前的“金标准”)在诊断 IK 方面的性能,以期为 DL 辅助诊断模型的临床适用性和部署提供信息。
本综述将考虑应用任何 DL 模型来诊断疑似 IK 患者的研究,包括细菌、真菌、原生动物和/或病毒来源。我们将搜索各种电子数据库,包括 EMBASE 和 MEDLINE 以及试验注册处。语言和出版日期没有限制。两名独立的评审员将评估标题、摘要和全文文章。提取的数据将包括每个主要研究的详细信息,包括标题、出版年份、作者、使用的 DL 模型类型、人群、样本量、决策阈值和诊断性能。当报告的结果具有足够的相似性时,我们将对纳入的主要研究进行荟萃分析。
本系统评价不需要伦理批准。我们计划通过在同行评议的期刊上发表/发表研究结果来传播我们的发现。
PROSPERO 注册号:CRD42022348596。