Suppr超能文献

脐带血 pH 值、血气和乳酸值在出生时的正常值、解读和临床应用。

Umbilical cord pH, blood gases, and lactate at birth: normal values, interpretation, and clinical utility.

机构信息

Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.

出版信息

Am J Obstet Gynecol. 2023 May;228(5S):S1222-S1240. doi: 10.1016/j.ajog.2022.07.001. Epub 2023 Mar 19.

Abstract

Normal birth is a eustress reaction, a beneficial hedonic stress with extremely high catecholamines that protects us from intrauterine hypoxia and assists in the rapid shift to extrauterine life. Occasionally the cellular O requirement becomes critical and an O deficit in blood (hypoxemia) may evolve to a tissue deficit (hypoxia) and finally a risk of organ damage (asphyxia). An increase in H concentration is reflected in a decrease in pH, which together with increased base deficit is a proxy for the level of fetal O deficit. Base deficit (or its negative value, base excess) was introduced to reflect the metabolic component of a low pH and to distinguish from the respiratory cause of a low pH, which is a high CO concentration. Base deficit is a theoretical estimate and not a measured parameter, calculated by the blood gas analyzer from values of pH, the partial pressure of CO, and hemoglobin. Different brands of analyzers use different calculation equations, and base deficit values can thus differ by multiples. This could influence the diagnosis of metabolic acidosis, which is commonly defined as a pH <7.00 combined with a base deficit ≥12.0 mmol/L in umbilical cord arterial blood. Base deficit can be calculated as base deficit in blood (or actual base deficit) or base deficit in extracellular fluid (or standard base deficit). The extracellular fluid compartment represents the blood volume diluted with the interstitial fluid. Base deficit in extracellular fluid is advocated for fetal blood because a high partial pressure of CO (hypercapnia) is common in newborns without concomitant hypoxia, and hypercapnia has a strong influence on the pH value, then termed respiratory acidosis. An increase in partial pressure of CO causes less increase in base deficit in extracellular fluid than in base deficit in blood, thus base deficit in extracellular fluid better represents the metabolic component of acidosis. The different types of base deficit for defining metabolic acidosis in cord blood have unfortunately not been noticed by many obstetrical experts and organizations. In addition to an increase in H concentration, the lactate production is accelerated during hypoxia and anaerobic metabolism. There is no global consensus on definitions of normal cord blood gases and lactate, and different cutoff values for abnormality are used. At a pH <7.20, 7% to 9% of newborns are deemed academic; at <7.10, 1% to 3%; and at <7.00, 0.26% to 1.3%. From numerous studies of different eras and sizes, it can firmly be concluded that in the cord artery, the statistically defined lower pH limit (mean -2 standard deviations) is 7.10. Given that the pH for optimal enzyme activity differs between different cell types and organs, it seems difficult to establish a general biologically critical pH limit. The blood gases and lactate in cord blood change with the progression of pregnancy toward a mixed metabolic and respiratory acidemia because of increased metabolism and CO production in the growing fetus. Gestational age-adjusted normal reference values have accordingly been published for pH and lactate, and they associate with Apgar score slightly better than stationary cutoffs, but they are not widely used in clinical practice. On the basis of good-quality data, it is reasonable to set a cord artery lactate cutoff (mean +2 standard deviations) at 10 mmol/L at 39 to 40 weeks' gestation. For base deficit, it is not possible to establish statistically defined reference values because base deficit is calculated with different equations, and there is no consensus on which to use. Arterial cord blood represents the fetus better than venous blood, and samples from both vessels are needed to validate the arterial origin. A venoarterial pH gradient of <0.02 is commonly used to differentiate arterial from venous samples. Reference values for pH in cord venous blood have been determined, but venous blood comes from the placenta after clearance of a surplus of arterial CO, and base deficit in venous blood then overestimates the metabolic component of fetal acidosis. The ambition to increase neonatal hemoglobin and iron depots by delaying cord clamping after birth results in falsely acidic blood gas and lactate values if the blood sampling is also delayed. Within seconds after birth, sour metabolites accumulated in peripheral tissues and organs will flood into the central circulation and further to the cord arteries when the newborn starts to breathe, move, and cry. This influence of "hidden acidosis" can be avoided by needle puncture of unclamped cord vessels and blood collection immediately after birth. Because of a continuing anaerobic glycolysis in the collected blood, it should be analyzed within 5 minutes to not result in a falsely high lactate value. If the syringe is placed in ice slurry, the time limit is 20 minutes. For pH, it is reasonable to wait no longer than 15 minutes if not in ice. Routine analyses of cord blood gases enable perinatal audits to gain the wisdom of hindsight, to maintain quality assurance at a maternity unit over years by following the rate of neonatal acidosis, to compare results between hospitals on regional or national bases, and to obtain an objective outcome measure in clinical research. Given that the intrapartum cardiotocogram is an uncertain proxy for fetal hypoxia, and there is no strong correlation between pathologic cardiotocograms and fetal acidosis, a cord artery pH may help rather than hurt a staff person subjected to a malpractice suit based on undesirable cardiotocogram patterns. Contrary to common beliefs and assumptions, up to 90% of cases of cerebral palsy do not originate from intrapartum events. Future research will elucidate whether cell injury markers with point-of-care analysis will become valuable in improving the dating of perinatal injuries and differentiating hypoxic from nonhypoxic injuries.

摘要

正常分娩是一种正压反应,是一种有益的愉悦性压力,儿茶酚胺含量极高,可防止胎儿宫内缺氧,并协助胎儿快速适应宫外生活。偶尔,细胞对氧的需求变得至关重要,血液中氧的亏缺(低氧血症)可能发展为组织亏缺(缺氧),最终导致器官损伤(窒息)。H+浓度的增加反映在 pH 值降低,pH 值降低与基础不足(base deficit)的增加一起,是胎儿氧亏缺程度的指标。基础不足(或其负值,碱剩余)的引入是为了反映低 pH 值的代谢成分,并与低 pH 值的呼吸原因(高 CO 浓度)区分开来。基础不足是一个理论估计值,不是测量参数,而是由血气分析仪根据 pH 值、CO 分压和血红蛋白的值计算得出。不同品牌的分析仪使用不同的计算方程,因此基础不足值可能相差几倍。这可能会影响代谢性酸中毒的诊断,通常定义为 pH 值<7.00 且脐带动脉血的基础不足≥12.0mmol/L。基础不足可以计算为血液中的基础不足(或实际基础不足)或细胞外液中的基础不足(或标准基础不足)。细胞外液代表被间质液稀释的血容量。提倡在胎儿血液中使用细胞外液基础不足,是因为新生儿中常见的高 CO 分压(高碳酸血症)而没有伴随缺氧,并且高碳酸血症对 pH 值有强烈影响,然后被称为呼吸性酸中毒。CO 分压的增加导致细胞外液中的基础不足增加少于血液中的基础不足,因此细胞外液中的基础不足能更好地代表酸中毒的代谢成分。脐带血中用于定义代谢性酸中毒的不同类型的基础不足,并没有被许多产科专家和组织注意到。除了 H+浓度的增加,缺氧和无氧代谢会加速乳酸的产生。脐带血气和乳酸的正常参考值没有全球共识,不同的异常截断值被使用。在 pH 值<7.20 时,有 7%到 9%的新生儿被认为是学术性的;在 pH 值<7.10 时,有 1%到 3%;在 pH 值<7.00 时,有 0.26%到 1.3%。从不同时代和规模的大量研究中可以得出结论,在脐动脉中,统计学上定义的较低 pH 值下限(平均值-2 个标准差)为 7.10。由于不同细胞类型和器官中最佳酶活性的 pH 值不同,因此很难建立一个普遍的生物学临界 pH 值。由于胎儿生长过程中代谢和 CO 生成的增加,脐带血中的血气和乳酸随着妊娠向混合代谢和呼吸性酸中毒的发展而变化。因此,已经发布了 pH 值和乳酸的胎龄校正正常参考值,它们与 Apgar 评分的相关性略好于固定截断值,但在临床实践中并未广泛使用。基于高质量的数据,在 39 至 40 周妊娠时,将脐带动脉乳酸截断值(平均值+2 个标准差)设定为 10mmol/L 是合理的。对于基础不足,由于基础不足是用不同的方程计算的,并且没有关于使用哪个方程的共识,因此不可能建立统计学上定义的参考值。脐带动脉血比静脉血更能代表胎儿,并且需要来自两种血管的样本来验证动脉起源。通常使用静脉动脉 pH 梯度<0.02 来区分动脉和静脉样本。已经确定了脐带静脉血气的 pH 值参考值,但静脉血来自胎盘,清除了动脉 CO 的过剩后,静脉血中的基础不足会高估胎儿酸中毒的代谢成分。通过延迟出生后脐带夹闭来增加新生儿血红蛋白和铁储备的愿望,如果同时延迟采血,会导致血气和乳酸值出现假性酸性。出生后几秒钟内,积累在周围组织和器官中的酸性代谢物会涌入中心循环,然后进入脐动脉。这种“隐匿性酸中毒”的影响可以通过在出生后立即对未夹闭的脐带血管进行针穿刺和采血来避免。由于收集的血液中持续进行无氧糖酵解,因此如果不立即分析,其乳酸值会偏高。如果将注射器置于冰浆中,则时间限制为 20 分钟。如果不是在冰中,pH 值的等待时间合理不超过 15 分钟。常规分析脐带血气可以使围产期审计获得事后的智慧,通过监测新生儿酸中毒的发生率,多年来在产科单位保持质量保证,在区域或国家基础上比较医院之间的结果,并在临床研究中获得客观的结果衡量标准。由于产时胎心监护图是胎儿缺氧的不确定替代指标,并且病理胎心监护图与胎儿酸中毒之间没有很强的相关性,因此在基于不良胎心监护图模式的医护人员受到不当行为诉讼时,脐带动脉 pH 值可能会有所帮助而不是伤害他们。与普遍的看法和假设相反,高达 90%的脑瘫病例并非源自产时事件。未来的研究将阐明细胞损伤标志物与即时分析相结合是否会成为改善围产期损伤分期和区分缺氧性与非缺氧性损伤的有价值的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验