Sber Artificial Intelligence Lab, Moscow, Russia.
Laboratory of Bioinformatics, Faculty of Computer Science, HSE University, Moscow, Russia
Life Sci Alliance. 2023 May 10;6(7). doi: 10.26508/lsa.202301962. Print 2023 Jul.
Identifying roles for Z-DNA remains challenging given their dynamic nature. Here, we perform genome-wide interrogation with the DNABERT transformer algorithm trained on experimentally identified Z-DNA forming sequences (Z-flipons). The algorithm yields large performance enhancements (F1 = 0.83) over existing approaches and implements computational mutagenesis to assess the effects of base substitution on Z-DNA formation. We show Z-flipons are enriched in promoters and telomeres, overlapping quantitative trait loci for RNA expression, RNA editing, splicing, and disease-associated variants. We cross-validate across a number of orthogonal databases and define BZ junction motifs. Surprisingly, many effects we delineate are likely mediated through Z-RNA formation. A shared Z-RNA motif is identified in SCARF2, SMAD1, and CACNA1 transcripts, whereas other motifs are present in noncoding RNAs. We provide evidence for a Z-RNA fold that promotes adaptive immunity through alternative splicing of KRAB domain zinc finger proteins. An analysis of OMIM and presumptive gnomAD loss-of-function datasets reveals an overlap of Z-flipons with disease-causing variants in 8.6% and 2.9% of Mendelian disease genes, respectively, greatly extending the range of phenotypes mapped to Z-flipons.
鉴于 Z-DNA 的动态性质,确定其功能仍然具有挑战性。在这里,我们使用经过实验鉴定的 Z-DNA 形成序列(Z-发夹)训练的 DNABERT 转换器算法对全基因组进行了研究。该算法在现有方法的基础上实现了性能的大幅提升(F1 = 0.83),并实施了计算诱变以评估碱基替换对 Z-DNA 形成的影响。我们发现 Z-发夹富含启动子和端粒,与 RNA 表达、RNA 编辑、剪接和疾病相关变体的数量性状基因座重叠。我们在许多正交数据库中进行了交叉验证,并定义了 BZ 连接基序。令人惊讶的是,我们描述的许多影响很可能是通过 Z-RNA 形成介导的。在 SCARF2、SMAD1 和 CACNA1 转录本中鉴定到共享的 Z-RNA 基序,而其他基序存在于非编码 RNA 中。我们提供了证据表明 Z-RNA 折叠通过 KRAB 结构域锌指蛋白的选择性剪接促进适应性免疫。对 OMIM 和假定的 gnomAD 功能丧失数据集的分析表明,Z-发夹与孟德尔疾病基因中 8.6%和 2.9%的致病变体分别重叠,极大地扩展了映射到 Z-发夹的表型范围。