Herbert Alan
Discovery, InsideOutBio Inc, Charlestown, MA, USA.
J R Soc Interface. 2025 Mar;22(224):20250049. doi: 10.1098/rsif.2025.0049. Epub 2025 Mar 26.
Recent findings have confirmed the long-held belief that alternative DNA conformations encoded by genetic elements called flipons have important biological roles. Many of these alternative structures are formed by sequences originally spread throughout the human genome by endogenous retroelements (ERE) that captured 50% of the territory before being disarmed. Only 2.6% of the remaining DNA codes for proteins. Other organisms have instead streamlined their genomes by eliminating invasive retroelements and other repeat elements. The question arises, why retain any ERE at all? A new synthesis suggests that flipons enable genomes to learn and programme the context-specific readout of information by altering the transcripts produced. The exchange of energy for information is mediated through changes in DNA topology. Here I provide a formulation for how genomes learn and describe the underlying p-bit algorithm through which flipons are tuned. The framework suggests new strategies for the therapeutic reprogramming of cells.
最近的研究结果证实了长期以来的一种观点,即由称为翻转子的遗传元件编码的替代性DNA构象具有重要的生物学作用。这些替代性结构中的许多是由最初通过内源性逆转录元件(ERE)散布在人类基因组中的序列形成的,这些逆转录元件在被解除武装之前占据了50%的区域。其余DNA中只有2.6%编码蛋白质。相反,其他生物通过消除侵入性逆转录元件和其他重复元件来简化它们的基因组。问题来了,为什么还要保留任何ERE呢?一种新的综合观点认为,翻转子能够使基因组通过改变产生的转录本,学习并对信息进行上下文特异性的读出编程。能量与信息的交换是通过DNA拓扑结构的变化介导的。在此,我给出了基因组如何学习的一种表述,并描述了用于调节翻转子的潜在p位算法。该框架为细胞的治疗性重编程提出了新策略。