Department of Genetics, Harvard Medical School, Boston, MA, USA.
Methods Mol Biol. 2023;2661:257-280. doi: 10.1007/978-1-0716-3171-3_15.
To understand the human mitochondrial translation process, tools are required to dissect this system at a global scale. The mechanisms and regulation of translation in mitochondria are different from those in the cytosol, and mitochondrial ribosomes have distinct biochemical properties. In this chapter, we describe in detail the modifications we have made to the ribosome profiling approach to adapt it to the unique characteristics of the human mitochondrial ribosome. This approach maximizes the fraction of mitochondrial ribosomes recovered, providing a snapshot of the mitochondrial translation landscape with minimal bias. We also describe the use of mouse lysate as an internal spike-in control for normalization, allowing quantification of global changes in translation across samples. Finally, we outline the bioinformatic pipelines to process the raw reads and identify mitoribosome A sites in the absence of untranslated regions flanking open reading frames. This method offers a subcodon-resolution time-sensitive global approach to explore the mitochondrial translation process in human cells.
为了深入了解人类线粒体翻译过程,我们需要使用工具在全局范围内对该系统进行剖析。线粒体中转录和调控的机制与细胞质中的不同,而且线粒体核糖体具有独特的生化特性。在本章中,我们详细描述了对核糖体图谱分析方法的修改,使其适应人类线粒体核糖体的独特特征。该方法最大限度地提高了回收的线粒体核糖体的比例,提供了最小偏差的线粒体翻译图谱的快照。我们还描述了使用鼠裂解物作为内部内参对照进行归一化,允许在样本间定量全局翻译变化。最后,我们概述了生物信息学流程来处理原始读数,并在没有侧翼开放阅读框的非翻译区的情况下识别线粒体核糖体 A 位点。该方法提供了一种亚密码子分辨率的、时间敏感的、全面的方法来探索人类细胞中的线粒体翻译过程。