Suppr超能文献

基于深度学习方法从序列信息预测转运蛋白。

Prediction of transport proteins from sequence information with the deep learning approach.

机构信息

Department of Clinical Laboratory, Wenzhou People's Hospital, The Third Affiliated Hospital of Shanghai University, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China.

Institute of Translational Medicine, Baotou Central Hospital, Baotou, China.

出版信息

Comput Biol Med. 2023 Jun;160:106974. doi: 10.1016/j.compbiomed.2023.106974. Epub 2023 Apr 27.

Abstract

Transport proteins (TPs) are vital to the growth and life of all living things, especially in fields of microbial pathogenesis and drug resistance of tumor cells. Accurately identifying potential TPs remains an important challenge for the advancement of functional genomics. This study aimed to develop a tool for predicting TPs using the deep learning approach. Here, we proposed DeepTP, a convolutional neural network model that uses parallel subnetworks to extract features from protein sequences and uses fully connected layers for TP classification. To train and evaluate the performance of the developed model, datasets were collected from the UniProtKB/Swiss-Prot database. The test results revealed that the proposed model could successfully identify TPs with the AUCROC, accuracy, F-value, and Matthews correlation coefficient of 0.9719, 0.9513, 0.8982, and 0.8679, respectively. By further comparison, DeepTP achieved better performance than other commonly used methods. Analysis of the gradients of prediction score concerning input suggested that DeepTP makes predictions by recognizing the functional domains of TPs. We anticipate that DeepTP will serve as a useful tool for predicting TPs in large-scale genome projects, which will facilitate the discovery of novel TPs.

摘要

转运蛋白(TPs)对所有生物的生长和生命至关重要,特别是在微生物发病机制和肿瘤细胞耐药性领域。准确识别潜在的 TPs 仍然是功能基因组学发展的重要挑战。本研究旨在开发一种使用深度学习方法预测 TPs 的工具。在这里,我们提出了 DeepTP,这是一种卷积神经网络模型,它使用并行子网从蛋白质序列中提取特征,并使用全连接层进行 TP 分类。为了训练和评估所开发模型的性能,从 UniProtKB/Swiss-Prot 数据库中收集了数据集。测试结果表明,所提出的模型可以成功识别 TPs,其 AUCROC、准确性、F 值和 Matthews 相关系数分别为 0.9719、0.9513、0.8982 和 0.8679。通过进一步比较,DeepTP 的性能优于其他常用方法。关于输入的预测评分梯度的分析表明,DeepTP 通过识别 TPs 的功能域来进行预测。我们预计 DeepTP 将成为大规模基因组项目中预测 TPs 的有用工具,这将有助于发现新的 TPs。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验