Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
RNA. 2023 Aug;29(8):1201-1214. doi: 10.1261/rna.079656.123. Epub 2023 May 11.
Among RNAs, transfer RNAs (tRNAs) contain the widest variety of abundant posttranscriptional chemical modifications. These modifications are crucial for tRNAs to participate in protein synthesis, promoting proper tRNA structure and aminoacylation, facilitating anticodon:codon recognition, and ensuring the reading frame maintenance of the ribosome. While tRNA modifications were long thought to be stoichiometric, it is becoming increasingly apparent that these modifications can change dynamically in response to the cellular environment. The ability to broadly characterize the fluctuating tRNA modification landscape will be essential for establishing the molecular level contributions of individual sites of tRNA modification. The locations of modifications within individual tRNA sequences can be mapped using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). In this approach, a single tRNA species is purified, treated with ribonucleases, and the resulting single-stranded RNA products are subject to LC-MS/MS analysis. The application of LC-MS/MS to study tRNAs is limited by the necessity of analyzing one tRNA at a time, because the digestion of total tRNA mixtures by commercially available ribonucleases produces many short digestion products unable to be uniquely mapped back to a single site within a tRNA. We overcame these limitations by taking advantage of the highly structured nature of tRNAs to prevent the full digestion by single-stranded RNA-specific ribonucleases. Folding total tRNA prior to digestion allowed us to sequence tRNAs with up to 97% sequence coverage for individual tRNA species by LC-MS/MS. This method presents a robust avenue for directly detecting the distribution of modifications in total tRNAs.
在 RNA 中,转移 RNA(tRNA)包含最多样化的丰富转录后化学修饰。这些修饰对于 tRNA 参与蛋白质合成至关重要,有助于 tRNA 结构和氨酰化,促进反密码子:密码子识别,并确保核糖体阅读框的维持。虽然 tRNA 修饰长期以来被认为是化学计量的,但越来越明显的是,这些修饰可以根据细胞环境动态变化。广泛描述不断变化的 tRNA 修饰景观的能力对于确定 tRNA 修饰各个位点的分子水平贡献至关重要。可以使用液相色谱与串联质谱(LC-MS/MS)来映射单个 tRNA 序列内修饰的位置。在这种方法中,纯化单个 tRNA 物种,用核糖核酸酶处理,然后将所得的单链 RNA 产物进行 LC-MS/MS 分析。LC-MS/MS 应用于 tRNA 的研究受到每次只能分析一个 tRNA 的限制,因为商业可得的核糖核酸酶对总 tRNA 混合物的消化会产生许多短的消化产物,无法唯一映射回 tRNA 内的单个位点。我们利用 tRNA 的高度结构化性质来克服这些限制,防止单链 RNA 特异性核糖核酸酶的完全消化。在消化之前折叠总 tRNA ,使我们能够通过 LC-MS/MS 对单个 tRNA 物种进行高达 97%序列覆盖率的 tRNA 测序。该方法为直接检测总 tRNAs 中的修饰分布提供了一种稳健的途径。