Suppr超能文献

将纳米孔直接 RNA 测序与遗传学和质谱法相结合,分析 42 种酵母 tRNA 同工受体中的 T 环碱基修饰。

Combining Nanopore direct RNA sequencing with genetics and mass spectrometry for analysis of T-loop base modifications across 42 yeast tRNA isoacceptors.

机构信息

Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.

Department of Biology, University of Oregon, Eugene, OR 97403, USA.

出版信息

Nucleic Acids Res. 2024 Oct 28;52(19):12074-12092. doi: 10.1093/nar/gkae796.

Abstract

Transfer RNAs (tRNAs) contain dozens of chemical modifications. These modifications are critical for maintaining tRNA tertiary structure and optimizing protein synthesis. Here we advance the use of Nanopore direct RNA-sequencing (DRS) to investigate the synergy between modifications that are known to stabilize tRNA structure. We sequenced the 42 cytosolic tRNA isoacceptors from wild-type yeast and five tRNA-modifying enzyme knockout mutants. These data permitted comprehensive analysis of three neighboring and conserved modifications in T-loops: 5-methyluridine (m5U54), pseudouridine (Ψ55), and 1-methyladenosine (m1A58). Our results were validated using direct measurements of chemical modifications by mass spectrometry. We observed concerted T-loop modification circuits-the potent influence of Ψ55 for subsequent m1A58 modification on more tRNA isoacceptors than previously observed. Growing cells under nutrient depleted conditions also revealed a novel condition-specific increase in m1A58 modification on some tRNAs. A global and isoacceptor-specific classification strategy was developed to predict the status of T-loop modifications from a user-input tRNA DRS dataset, applicable to other conditions and tRNAs in other organisms. These advancements demonstrate how orthogonal technologies combined with genetics enable precise detection of modification landscapes of individual, full-length tRNAs, at transcriptome-scale.

摘要

转移 RNA(tRNA)含有数十种化学修饰。这些修饰对于维持 tRNA 三级结构和优化蛋白质合成至关重要。在这里,我们推进了使用纳米孔直接 RNA 测序(DRS)来研究已知稳定 tRNA 结构的修饰之间的协同作用。我们对来自野生型酵母的 42 种细胞质 tRNA 同工受体和五种 tRNA 修饰酶敲除突变体进行了测序。这些数据允许对 T 环中三个相邻且保守的修饰进行全面分析:5-甲基尿嘧啶(m5U54)、假尿嘧啶(Ψ55)和 1-甲基腺苷(m1A58)。我们的结果通过质谱直接测量化学修饰进行了验证。我们观察到 T 环修饰的协同电路——Ψ55 对随后的 m1A58 修饰的强烈影响,比以前观察到的更多的 tRNA 同工受体上。在营养物质耗尽的条件下培养细胞也揭示了一些 tRNA 上 m1A58 修饰的新型条件特异性增加。开发了一种全局和同工受体特异性分类策略,可从用户输入的 tRNA DRS 数据集预测 T 环修饰的状态,适用于其他条件和其他生物体中的 tRNA。这些进展表明,如何将正交技术与遗传学相结合,能够以转录组规模精确检测单个全长 tRNA 的修饰图谱。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de1a/11514469/36c90e6c3ed4/gkae796figgra1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验