Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC, Utrecht, The Netherlands.
Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK.
Angew Chem Int Ed Engl. 2023 Jul 10;62(28):e202305086. doi: 10.1002/anie.202305086. Epub 2023 Jun 5.
β-NaYF nanocrystals are a popular class of optical materials. They can be doped with optically active lanthanide ions and shaped into core-multi-shell geometries with controlled dopant distributions. Here, we follow the synthesis of β-NaYF nanocrystals from α-NaYF precursor particles using in situ small-angle and wide-angle X-ray scattering and ex situ electron microscopy. We observe an evolution from a unimodal particle size distribution to bimodal, and eventually back to unimodal. The final size distribution is narrower in absolute numbers than the initial distribution. These peculiar growth dynamics happen in large part before the α-to-β phase transformation. We propose that the splitting of the size distribution is caused by variations in the reactivity of α-NaYF precursor particles, potentially due to inter-particle differences in stoichiometry. Rate equation modeling confirms that a continuous distribution of reactivities can result in the observed particle growth dynamics.
β-NaYF 纳米晶体是一类流行的光学材料。它们可以掺杂光学活性镧系离子,并通过控制掺杂剂分布被塑造成具有核-多壳结构的形状。在这里,我们使用原位小角和广角 X 射线散射以及异位电子显微镜,从 α-NaYF 前体颗粒中合成 β-NaYF 纳米晶体。我们观察到从单峰粒径分布到双峰,最终再回到单峰的演变。最终的粒径分布在绝对值上比初始分布更窄。这些特殊的生长动力学在很大程度上发生在 α 到 β 相变之前。我们提出,粒径分布的分裂是由 α-NaYF 前体颗粒的反应性变化引起的,这可能是由于颗粒间的化学计量比存在差异。速率方程模型证实,连续分布的反应性可以导致观察到的颗粒生长动力学。