Wang Lansheng, Xu Duo, Hu Xudong, Quan Rui, Lu Dong, Li Zhen, Yu Changshui, Li Xingjun, Ma Shuo, Li Xiaoming, Zhang Zhengkui, Yu Rutong
Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.
Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
Mater Today Bio. 2025 Jul 11;33:102069. doi: 10.1016/j.mtbio.2025.102069. eCollection 2025 Aug.
Glioblastoma (GBM) is the most aggressive primary brain tumor with a grim prognosis and low survival rates. This unfavorable therapeutic outcome is partially because of the inadequate immune infiltration and an immunosuppressive microenvironment, which compromises the effectiveness of conventional radiotherapy (RT) and chemotherapy. Inducing immunogenic cell death (ICD) to modulate the antitumor immune response has emerged as a highly promising therapeutic strategy for GBM. Herein, we report the development of a novel radiodynamic therapy agent via an in situ growth strategy. This innovative agent integrates a porphyrin-hafnium metal-organic framework (MOF) with lanthanide scintillator nanoparticles (SNPs). Upon exposure to RT, the SNPs emit light, consequently activating the porphyrin photosensitizer. This mechanism circumvents the major limitation of poor light penetration through the scalp and skull, thereby enabling the effective delivery of photodynamic therapy to deep-seated tumor tissues. Concurrently, the hafnium enhances X-ray absorption, improving RT. This approach promotes tumor damage, triggers an immune response with ICD, dendritic cell maturation, and macrophage polarization. Additionally, the surface coating of nanoparticles with membranes derived from M1-polarized microglia allows them to efficiently cross the blood-brain barrier, enabling the precise targeting of GBM. Moreover, the costimulatory molecules present on these microglial membranes contribute to the remodeling of the immunosuppressive tumor microenvironment. Thus, RT-induced ICD combined with interleukin-12 therapy suppresses glioma recurrence. This nanoparticle system has potential as a dual-functional agent for GBM treatment.
胶质母细胞瘤(GBM)是最具侵袭性的原发性脑肿瘤,预后严峻,生存率低。这种不利的治疗结果部分归因于免疫浸润不足和免疫抑制微环境,这削弱了传统放疗(RT)和化疗的效果。诱导免疫原性细胞死亡(ICD)以调节抗肿瘤免疫反应已成为一种极有前景的GBM治疗策略。在此,我们报告了一种通过原位生长策略开发的新型放射动力学治疗剂。这种创新制剂将卟啉 - 铪金属有机框架(MOF)与镧系闪烁体纳米颗粒(SNP)整合在一起。在接受放疗时,SNP会发光,从而激活卟啉光敏剂。这种机制规避了光线穿透头皮和颅骨能力差的主要限制,从而能够将光动力疗法有效地传递到深部肿瘤组织。同时,铪增强了X射线吸收,改善了放疗效果。这种方法促进肿瘤损伤,引发具有ICD、树突状细胞成熟和巨噬细胞极化的免疫反应。此外,用源自M1极化小胶质细胞的膜对纳米颗粒进行表面包覆,使其能够有效穿过血脑屏障,实现对GBM的精准靶向。而且,这些小胶质细胞膜上存在的共刺激分子有助于重塑免疫抑制性肿瘤微环境。因此,放疗诱导的ICD联合白细胞介素-12治疗可抑制胶质瘤复发。这种纳米颗粒系统有潜力成为一种用于GBM治疗的双功能制剂。