ECE Department, North Carolina State University, Raleigh, 27606, USA.
Sci Rep. 2023 May 12;13(1):7726. doi: 10.1038/s41598-023-32415-9.
We present an analysis for metamaterial (MM) enhanced wireless power transfer (WPT) that includes new results revealing the impact of magnetostatic surface waves and their degradation of WPT efficiency. Our analysis shows that the commonly used fixed loss model used by previous works leads to the incorrect conclusion regarding the highest efficeincy MM configuration. Specifically, we show that the "perfect lens" configuration provides lower WPT efficiency enhancement in comparison to many other MM configurations and operating conditions. To understand why, we introduce a model for quantifying loss in MM-enhanced WPT and introduce a new figure of merit on efficiency enhancement, [Formula: see text]. Using both simulation and experimental prototypes, we show that while the "perfect-lens" MM achieves a field enhancement of four times the other configurations considered, its internal loss due to magnetostatic waves significantly reduces its efficiency-enhancement. Surprisingly, all the MM configurations analyzed other than the "perfect-lens" achieved higher efficiency enhancement in simulation and in experiment than the perfect lens.
我们提出了一种对超材料(MM)增强无线功率传输(WPT)的分析,其中包括揭示静磁表面波的影响及其对 WPT 效率的降低的新结果。我们的分析表明,先前工作中使用的常用固定损耗模型导致了关于最高效率 MM 配置的错误结论。具体来说,我们表明与许多其他 MM 配置和操作条件相比,“完美透镜”配置提供的 WPT 效率增强更低。为了理解原因,我们引入了一种用于量化 MM 增强的 WPT 损耗的模型,并引入了一个新的效率增强的有效度量标准[Formula: see text]。使用仿真和实验原型,我们表明,虽然“完美透镜”MM 实现了比考虑的其他配置大四倍的场增强,但由于静磁波引起的内部损耗显著降低了其效率增强。令人惊讶的是,除了“完美透镜”之外,所有分析的 MM 配置在仿真和实验中都实现了比完美透镜更高的效率增强。