Suppr超能文献

一种基于基因表达数据的新型混合龙格-库塔优化器与支持向量机用于癌症分类

A Novel Hybrid Runge Kutta Optimizer with Support Vector Machine on Gene Expression Data for Cancer Classification.

作者信息

Houssein Essam H, Hassan Hager N, Samee Nagwan Abdel, Jamjoom Mona M

机构信息

Faculty of Computers and Information, Minia University, Minia 61519, Egypt.

Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.

出版信息

Diagnostics (Basel). 2023 May 3;13(9):1621. doi: 10.3390/diagnostics13091621.

Abstract

It is crucial to accurately categorize cancers using microarray data. Researchers have employed a variety of computational intelligence approaches to analyze gene expression data. It is believed that the most difficult part of the problem of cancer diagnosis is determining which genes are informative. Therefore, selecting genes to study as a starting point for cancer classification is common practice. We offer a novel approach that combines the Runge Kutta optimizer (RUN) with a support vector machine (SVM) as the classifier to select the significant genes in the detection of cancer tissues. As a means of dealing with the high dimensionality that characterizes microarray datasets, the preprocessing stage of the ReliefF method is implemented. The proposed RUN-SVM approach is tested on binary-class microarray datasets (Breast2 and Prostate) and multi-class microarray datasets in order to assess its efficacy (i.e., Brain Tumor1, Brain Tumor2, Breast3, and Lung Cancer). Based on the experimental results obtained from analyzing six different cancer gene expression datasets, the proposed RUN-SVM approach was found to statistically beat the other competing algorithms due to its innovative search technique.

摘要

使用微阵列数据准确地对癌症进行分类至关重要。研究人员采用了多种计算智能方法来分析基因表达数据。人们认为癌症诊断问题中最困难的部分是确定哪些基因具有信息价值。因此,选择基因进行研究作为癌症分类的起点是常见的做法。我们提出了一种新颖的方法,将龙格 - 库塔优化器(RUN)与支持向量机(SVM)作为分类器相结合,以在癌症组织检测中选择重要基因。作为处理微阵列数据集高维特征的一种手段,实施了ReliefF方法的预处理阶段。所提出的RUN - SVM方法在二分类微阵列数据集(Breast2和Prostate)和多分类微阵列数据集上进行了测试,以评估其有效性(即脑肿瘤1、脑肿瘤2、Breast3和肺癌)。基于从分析六个不同癌症基因表达数据集获得的实验结果,发现所提出的RUN - SVM方法因其创新的搜索技术在统计学上优于其他竞争算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db56/10178557/8b95b1a9d2e8/diagnostics-13-01621-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验