文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于骨科手术应用的拉胀生物医学超材料:综述

Auxetic Biomedical Metamaterials for Orthopedic Surgery Applications: A Comprehensive Review.

作者信息

Sun Minghao, Hu Xin, Tian Leilei, Yang Xiao, Min Li

机构信息

Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.

Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, Chengdu, China.

出版信息

Orthop Surg. 2024 Aug;16(8):1801-1815. doi: 10.1111/os.14142. Epub 2024 Jul 3.


DOI:10.1111/os.14142
PMID:38961661
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11293933/
Abstract

Poisson's ratio in auxetic materials shifts from typically positive to negative, causing lateral expansion during axial tension. This scale-independent characteristic, originating from tailored architectures, exhibits specific physical properties, including energy adsorption, shear resistance, and fracture resistance. These metamaterials demonstrate exotic mechanical properties with potential applications in several engineering fields, but biomedical applications seem to be one of the most relevant, with an increasing number of articles published in recent years, which present opportunities ranging from cellular repair to organ reconstruction with outstanding mechanical performance, mechanical conduction, and biological activity compared with traditional biomedical metamaterials. Therefore, focusing on understanding the potential of these structures and promoting theoretical and experimental investigations into the benefits of their unique mechanical properties is necessary for achieving high-performance biomedical applications. Considering the demand for advanced biomaterial implants in surgical technology and the profound advancement of additive manufacturing technology that are particularly relevant to fabricating complex and customizable auxetic mechanical metamaterials, this review focuses on the fundamental geometric configuration and unique physical properties of negative Poisson's ratio materials, then categorizes and summarizes auxetic material applications across some surgical departments, revealing efficacy in joint surgery, spinal surgery, trauma surgery, and sports medicine contexts. Additionally, it emphasizes the substantial potential of auxetic materials as innovative biomedical solutions in orthopedics and demonstrates the significant potential for comprehensive surgical application in the future.

摘要

负泊松比材料的泊松比从通常的正值转变为负值,导致在轴向拉伸过程中发生横向膨胀。这种与尺度无关的特性源于定制的结构,具有特定的物理性能,包括能量吸收、抗剪切和抗断裂性能。这些超材料展现出奇异的力学性能,在多个工程领域具有潜在应用,但生物医学应用似乎是最相关的领域之一,近年来发表的文章数量不断增加,与传统生物医学超材料相比,其提供了从细胞修复到器官重建等一系列机会,具有出色的力学性能、力学传导和生物活性。因此,为了实现高性能的生物医学应用,有必要专注于理解这些结构的潜力,并推动对其独特力学性能益处的理论和实验研究。考虑到手术技术中对先进生物材料植入物的需求以及增材制造技术的重大进步,这与制造复杂且可定制的负泊松比力学超材料特别相关,本综述聚焦于负泊松比材料的基本几何构型和独特物理性能,然后对一些外科科室的负泊松比材料应用进行分类和总结,揭示其在关节手术、脊柱手术、创伤手术和运动医学领域的疗效。此外,它强调了负泊松比材料作为骨科创新生物医学解决方案的巨大潜力,并展示了其在未来全面手术应用中的巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59a5/11293933/0d9a3d46ae59/OS-16-1801-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59a5/11293933/c209f5cf33a3/OS-16-1801-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59a5/11293933/8ceb4ce389c4/OS-16-1801-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59a5/11293933/f52a3388bef6/OS-16-1801-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59a5/11293933/e36a7592f6f8/OS-16-1801-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59a5/11293933/3b18cbd48820/OS-16-1801-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59a5/11293933/0d9a3d46ae59/OS-16-1801-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59a5/11293933/c209f5cf33a3/OS-16-1801-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59a5/11293933/8ceb4ce389c4/OS-16-1801-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59a5/11293933/f52a3388bef6/OS-16-1801-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59a5/11293933/e36a7592f6f8/OS-16-1801-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59a5/11293933/3b18cbd48820/OS-16-1801-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59a5/11293933/0d9a3d46ae59/OS-16-1801-g006.jpg

相似文献

[1]
Auxetic Biomedical Metamaterials for Orthopedic Surgery Applications: A Comprehensive Review.

Orthop Surg. 2024-8

[2]
Review: Auxetic Polymer-Based Mechanical Metamaterials for Biomedical Applications.

ACS Biomater Sci Eng. 2022-7-11

[3]
Mechanical performance of additively manufactured cobalt-chromium-molybdenum auxetic meta-biomaterial bone scaffolds.

J Mech Behav Biomed Mater. 2022-10

[4]
Additively Manufactured Hierarchical Auxetic Mechanical Metamaterials.

Materials (Basel). 2022-8-15

[5]
Mechanical anisotropy of two-dimensional metamaterials: a computational study.

Nanoscale Adv. 2019-5-31

[6]
Revolutionizing Prosthetic Design with Auxetic Metamaterials and Structures: A Review of Mechanical Properties and Limitations.

Micromachines (Basel). 2023-5-31

[7]
Coupling Chiral Cuboids with Wholly Auxetic Response.

Research (Wash D C). 2024-8-30

[8]
Cellular Auxetic Structures for Mechanical Metamaterials: A Review.

Sensors (Basel). 2020-6-1

[9]
A seamless auxetic substrate with a negative Poisson's ratio of -1.

Nat Commun. 2024-8-21

[10]
Mechanical performance of auxetic meta-biomaterials.

J Mech Behav Biomed Mater. 2020-4

引用本文的文献

[1]
Extreme nonlinearity by layered materials through inverse design.

Sci Adv. 2025-5-16

[2]
Clinical Application of 3D-Printed Custom Hemipelvic Prostheses With Negative Poisson's Ratio Porous Structures in Reconstruction After Resection of Pelvic Malignant Tumors.

Orthop Surg. 2025-6

[3]
Mandibular Implants: A Metamaterial-Based Approach to Reducing Stress Shielding.

Adv Healthc Mater. 2025-5

[4]
A metamaterial scaffold beyond modulus limits: enhanced osteogenesis and angiogenesis of critical bone defects.

Nat Commun. 2025-3-4

本文引用的文献

[1]
In vitro fatigue behavior and in vivo osseointegration of the auxetic porous bone screw.

Acta Biomater. 2023-10-15

[2]
3D-biofabricated chondrocyte-laden decellularized extracellular matrix-contained gelatin methacrylate auxetic scaffolds under cyclic tensile stimulation for cartilage regeneration.

Biofabrication. 2023-7-31

[3]
Analytical relationships for 2D Re-entrant auxetic metamaterials: An application to 3D printing flexible implants.

J Mech Behav Biomed Mater. 2023-7

[4]
Design and manufacturing of patient-specific Ti6Al4V implants with inhomogeneous porosity.

J Mech Behav Biomed Mater. 2023-7

[5]
Patient-specific femoral implant design using metamaterials for improving load transfer at proximal-lateral region of the femur.

Med Eng Phys. 2023-3

[6]
Bioinspired Construction of Annulus Fibrosus Implants with a Negative Poisson's Ratio for Intervertebral Disc Repair and Restraining Disc Herniation.

Bioconjug Chem. 2023-3-24

[7]
3D Printing of pH Indicator Auxetic Hydrogel Skin Wound Dressing.

Molecules. 2023-1-31

[8]
Osteoimmunity-regulating biomaterials promote bone regeneration.

Asian J Pharm Sci. 2023-1

[9]
Capability of auxetic femoral stems to reduce stress shielding after total hip arthroplasty.

J Orthop Translat. 2022-11-23

[10]
Effects of auxetic shoe on lumbar spine kinematics and kinetics during gait and drop vertical jump by a combined in vivo and modeling investigation.

Sci Rep. 2022-10-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索