Suppr超能文献

通过分层负泊松比结构提高高拉伸性电容式应变传感器的灵敏度

Sensitivity Improvement of Highly Stretchable Capacitive Strain Sensors by Hierarchical Auxetic Structures.

作者信息

Shintake Jun, Nagai Toshiaki, Ogishima Keita

机构信息

Department of Mechanical and Intelligent Systems Engineering, School of Informatics and Engineering, University of Electro-Communications, Chofu, Japan.

出版信息

Front Robot AI. 2019 Nov 22;6:127. doi: 10.3389/frobt.2019.00127. eCollection 2019.

Abstract

Highly stretchable sensors that can detect large strains are useful in deformable systems, such as soft robots and wearable devices. For stretchable strain sensors, two types of sensing methods exist, namely, resistive and capacitive. Capacitive sensing has several advantages over the resistive type, such as high linearity, repeatability, and low hysteresis. However, the sensitivity (gauge factor) of capacitive strain sensors is theoretically limited to 1, which is much lower than that of the resistive-type sensors. The objective of this study is to improve the sensitivity of highly stretchable capacitive strain sensors by integrating hierarchical auxetic structures into them. Auxetic structures have a negative Poisson's ratio that causes increase in change in capacitance with applied strains, and thereby improving sensitivity. In order to prove this concept, we fabricate and characterize two sensor samples with planar dimensions 60 mm × 16 mm. The samples have an acrylic elastomer (3M, VHB 4905) as the dielectric layer and a liquid metal (eutectic gallium-indium) for electrodes. On both sides of the sensor samples, hierarchical auxetic structures made of a silicone elastomer (Dow Corning, Sylgard 184) are attached. The samples are tested under strains up to 50% and the experimental results show that the sensitivity of the sensor with the auxetic structure exceeds the theoretical limit. In addition, it is observed that the sensitivity of this sensor is roughly two times higher than that of a sensor without the auxetic structure, while maintaining high linearity ( = 0.995), repeatability (≥10 cycles), and low hysteresis.

摘要

能够检测大应变的高拉伸性传感器在可变形系统中很有用,比如软机器人和可穿戴设备。对于可拉伸应变传感器,存在两种传感方法,即电阻式和电容式。电容式传感相对于电阻式具有若干优点,例如高线性、可重复性和低滞后性。然而,电容式应变传感器的灵敏度(应变系数)理论上限制为1,这比电阻式传感器的灵敏度低得多。本研究的目的是通过将分级负泊松比结构集成到高拉伸性电容式应变传感器中来提高其灵敏度。负泊松比结构具有负泊松比,这会导致电容变化随施加应变而增加,从而提高灵敏度。为了证明这一概念,我们制作并表征了两个平面尺寸为60毫米×16毫米的传感器样品。样品以丙烯酸弹性体(3M,VHB 4905)作为介电层,以液态金属(共晶镓铟)作为电极。在传感器样品的两侧,附着有由硅橡胶(道康宁,Sylgard 184)制成的分级负泊松比结构。对样品在高达50%的应变下进行测试,实验结果表明具有负泊松比结构的传感器的灵敏度超过了理论极限。此外,观察到该传感器的灵敏度大约是没有负泊松比结构的传感器的两倍,同时保持了高线性( = 0.995)、可重复性(≥10个循环)和低滞后性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0419/7805692/f60c746553f4/frobt-06-00127-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验