Karamov Radmir, Breite Christian, Lomov Stepan V, Sergeichev Ivan, Swolfs Yentl
The Center Materials Technologies, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia.
Department of Materials Engineering, KU Leuven Kasteelpark Arenberg 44, 3001 Leuven, Belgium.
Polymers (Basel). 2023 May 6;15(9):2206. doi: 10.3390/polym15092206.
Fibre breaks govern the strength of unidirectional composite materials under tension. The progressive development of fibre breaks is studied using in situ X-ray computed tomography, especially with synchrotron radiation. However, even with synchrotron radiation, the resolution of the time-resolved in situ images is not sufficient for a fully automated analysis of continuous mechanical deformations. We therefore investigate the possibility of increasing the quality of low-resolution in situ scans by means of super-resolution (SR) using 3D deep learning techniques, thus facilitating the subsequent fibre break identification. We trained generative neural networks (GAN) on datasets of high-(0.3 μm) and low-resolution (1.6 μm) statically acquired images. These networks were then applied to a low-resolution (1.1 μm) noisy image of a continuously loaded specimen. The statistical parameters of the fibre breaks used for the comparison are the number of individual breaks and the number of 2-plets and 3-plets per specimen volume. The fully automated process achieves an average accuracy of 82% of manually identified fibre breaks, while the semi-automated one reaches 92%. The developed approach allows the use of faster, low-resolution in situ tomography without losing the quality of the identified physical parameters.
纤维断裂决定了单向复合材料在拉伸时的强度。利用原位X射线计算机断层扫描技术,特别是同步辐射技术,对纤维断裂的渐进发展过程进行了研究。然而,即使使用同步辐射,时间分辨原位图像的分辨率也不足以对连续的机械变形进行全自动分析。因此,我们研究了利用三维深度学习技术通过超分辨率(SR)提高低分辨率原位扫描质量的可能性,从而便于后续的纤维断裂识别。我们在高分辨率(0.3μm)和低分辨率(1.6μm)的静态采集图像数据集上训练生成神经网络(GAN)。然后将这些网络应用于连续加载试样的低分辨率(1.1μm)噪声图像。用于比较的纤维断裂统计参数是每个试样体积中单个断裂的数量以及双联体和三联体的数量。全自动过程实现了人工识别纤维断裂平均82%的准确率,而半自动过程达到了92%。所开发的方法允许使用更快的低分辨率原位断层扫描,而不会损失所识别物理参数的质量。