Suppr超能文献

用于单向复合材料纤维断裂自动分析的同步加速器CT图像超分辨率处理

Super-Resolution Processing of Synchrotron CT Images for Automated Fibre Break Analysis of Unidirectional Composites.

作者信息

Karamov Radmir, Breite Christian, Lomov Stepan V, Sergeichev Ivan, Swolfs Yentl

机构信息

The Center Materials Technologies, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia.

Department of Materials Engineering, KU Leuven Kasteelpark Arenberg 44, 3001 Leuven, Belgium.

出版信息

Polymers (Basel). 2023 May 6;15(9):2206. doi: 10.3390/polym15092206.

Abstract

Fibre breaks govern the strength of unidirectional composite materials under tension. The progressive development of fibre breaks is studied using in situ X-ray computed tomography, especially with synchrotron radiation. However, even with synchrotron radiation, the resolution of the time-resolved in situ images is not sufficient for a fully automated analysis of continuous mechanical deformations. We therefore investigate the possibility of increasing the quality of low-resolution in situ scans by means of super-resolution (SR) using 3D deep learning techniques, thus facilitating the subsequent fibre break identification. We trained generative neural networks (GAN) on datasets of high-(0.3 μm) and low-resolution (1.6 μm) statically acquired images. These networks were then applied to a low-resolution (1.1 μm) noisy image of a continuously loaded specimen. The statistical parameters of the fibre breaks used for the comparison are the number of individual breaks and the number of 2-plets and 3-plets per specimen volume. The fully automated process achieves an average accuracy of 82% of manually identified fibre breaks, while the semi-automated one reaches 92%. The developed approach allows the use of faster, low-resolution in situ tomography without losing the quality of the identified physical parameters.

摘要

纤维断裂决定了单向复合材料在拉伸时的强度。利用原位X射线计算机断层扫描技术,特别是同步辐射技术,对纤维断裂的渐进发展过程进行了研究。然而,即使使用同步辐射,时间分辨原位图像的分辨率也不足以对连续的机械变形进行全自动分析。因此,我们研究了利用三维深度学习技术通过超分辨率(SR)提高低分辨率原位扫描质量的可能性,从而便于后续的纤维断裂识别。我们在高分辨率(0.3μm)和低分辨率(1.6μm)的静态采集图像数据集上训练生成神经网络(GAN)。然后将这些网络应用于连续加载试样的低分辨率(1.1μm)噪声图像。用于比较的纤维断裂统计参数是每个试样体积中单个断裂的数量以及双联体和三联体的数量。全自动过程实现了人工识别纤维断裂平均82%的准确率,而半自动过程达到了92%。所开发的方法允许使用更快的低分辨率原位断层扫描,而不会损失所识别物理参数的质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52c6/10180951/c900e3d7bcde/polymers-15-02206-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验