Suppr超能文献

相位生成对抗网络(PhaseGAN):一种用于未配对数据集的深度学习相位恢复方法。

PhaseGAN: a deep-learning phase-retrieval approach for unpaired datasets.

作者信息

Zhang Yuhe, Andreas Noack Mike, Vagovic Patrik, Fezzaa Kamel, Garcia-Moreno Francisco, Ritschel Tobias, Villanueva-Perez Pablo

出版信息

Opt Express. 2021 Jun 21;29(13):19593-19604. doi: 10.1364/OE.423222.

Abstract

Phase retrieval approaches based on deep learning (DL) provide a framework to obtain phase information from an intensity hologram or diffraction pattern in a robust manner and in real-time. However, current DL architectures applied to the phase problem rely on i) paired datasets, i. e., they are only applicable when a satisfactory solution of the phase problem has been found, and ii) the fact that most of them ignore the physics of the imaging process. Here, we present PhaseGAN, a new DL approach based on Generative Adversarial Networks, which allows the use of unpaired datasets and includes the physics of image formation. The performance of our approach is enhanced by including the image formation physics and a novel Fourier loss function, providing phase reconstructions when conventional phase retrieval algorithms fail, such as ultra-fast experiments. Thus, PhaseGAN offers the opportunity to address the phase problem in real-time when no phase reconstructions but good simulations or data from other experiments are available.

摘要

基于深度学习(DL)的相位恢复方法提供了一个框架,能够以稳健且实时的方式从强度全息图或衍射图案中获取相位信息。然而,当前应用于相位问题的深度学习架构依赖于:i)配对数据集,即它们仅在找到相位问题的满意解决方案时才适用;ii)大多数架构忽略成像过程物理原理这一事实。在此,我们提出了PhaseGAN,一种基于生成对抗网络的新型深度学习方法,它允许使用未配对数据集,并纳入了图像形成的物理原理。通过纳入图像形成物理原理和一种新颖的傅里叶损失函数,我们的方法性能得到了提升,在传统相位恢复算法失败时(如超快实验)仍能提供相位重建。因此,当没有相位重建但有良好的模拟结果或其他实验数据时,PhaseGAN提供了实时解决相位问题的机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验