Suppr超能文献

工业约束下的信息物理生产系统中去中心化的实时异常检测

Decentralized Real-Time Anomaly Detection in Cyber-Physical Production Systems under Industry Constraints.

机构信息

Hochschule Darmstadt- Department of Computer Science, University of Applied Sciences, 64295 Darmstadt, Germany.

出版信息

Sensors (Basel). 2023 Apr 23;23(9):4207. doi: 10.3390/s23094207.

Abstract

Anomaly detection is essential for realizing modern and secure cyber-physical production systems. By detecting anomalies, there is the possibility to recognize, react early, and in the best case, fix the anomaly to prevent the rise or the carryover of a failure throughout the entire manufacture. While current centralized methods demonstrate good detection abilities, they do not consider the limitations of industrial setups. To address all these constraints, in this study, we introduce an unsupervised, decentralized, and real-time process anomaly detection concept for cyber-physical production systems. We employ several 1D convolutional autoencoders in a sliding window approach to achieve adequate prediction performance and fulfill real-time requirements. To increase the flexibility and meet communication interface and processing constraints in typical cyber-physical production systems, we decentralize the execution of the anomaly detection into each separate cyber-physical system. The installation is fully automated, and no expert knowledge is needed to tackle data-driven limitations. The concept is evaluated in a real industrial cyber-physical production system. The test result confirms that the presented concept can be successfully applied to detect anomalies in all separate processes of each cyber-physical system. Therefore, the concept is promising for decentralized anomaly detection in cyber-physical production systems.

摘要

异常检测对于实现现代安全的网络物理生产系统至关重要。通过检测异常,可以识别、及早反应,并在最佳情况下修复异常,防止整个制造过程中故障的出现或蔓延。虽然当前的集中式方法展示了良好的检测能力,但它们没有考虑到工业设置的限制。为了解决所有这些限制,在本研究中,我们为网络物理生产系统引入了一种无监督、分散式和实时的过程异常检测概念。我们采用了几个 1D 卷积自动编码器,采用滑动窗口方法来实现足够的预测性能并满足实时要求。为了提高灵活性并满足典型网络物理生产系统中的通信接口和处理限制,我们将异常检测的执行分散到每个单独的网络物理系统中。安装是全自动的,无需专家知识即可解决数据驱动的限制。该概念在一个真实的工业网络物理生产系统中进行了评估。测试结果证实,所提出的概念可以成功应用于检测每个网络物理系统中所有单独过程的异常。因此,该概念在网络物理生产系统中的分散式异常检测中具有广阔的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffe3/10181007/57dd0c0fbb24/sensors-23-04207-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验