Faculty of Computer Science and Information Technology, Universiti Malaya, Kuala Lumpur 50603, Malaysia.
Department of Information Technology and Security, Jazan University, Jazan 45142, Saudi Arabia.
Sensors (Basel). 2023 Apr 28;23(9):4350. doi: 10.3390/s23094350.
Digital technologies have recently become more advanced, allowing for the development of social networking sites and applications. Despite these advancements, phone calls and text messages still make up the largest proportion of mobile data usage. It is possible to study human communication behaviors and mobility patterns using the useful information that mobile phone data provide. Specifically, the digital traces left by the large number of mobile devices provide important information that facilitates a deeper understanding of human behavior and mobility configurations for researchers in various fields, such as criminology, urban sensing, transportation planning, and healthcare. Mobile phone data record significant spatiotemporal (i.e., geospatial and time-related data) and communication (i.e., call) information. These can be used to achieve different research objectives and form the basis of various practical applications, including human mobility models based on spatiotemporal interactions, real-time identification of criminal activities, inference of friendship interactions, and density distribution estimation. The present research primarily reviews studies that have employed mobile phone data to investigate, assess, and predict human communication and mobility patterns in the context of crime prevention. These investigations have sought, for example, to detect suspicious activities, identify criminal networks, and predict crime, as well as understand human communication and mobility patterns in urban sensing applications. To achieve this, a systematic literature review was conducted on crime research studies that were published between 2014 and 2022 and listed in eight electronic databases. In this review, we evaluated the most advanced methods and techniques used in recent criminology applications based on mobile phone data and the benefits of using this information to predict crime and detect suspected criminals. The results of this literature review contribute to improving the existing understanding of where and how populations live and socialize and how to classify individuals based on their mobility patterns. The results show extraordinary growth in studies that utilized mobile phone data to study human mobility and movement patterns compared to studies that used the data to infer communication behaviors. This observation can be attributed to privacy concerns related to acquiring call detail records (CDRs). Additionally, most of the studies used census and survey data for data validation. The results show that social network analysis tools and techniques have been widely employed to detect criminal networks and urban communities. In addition, correlation analysis has been used to investigate spatial-temporal patterns of crime, and ambient population measures have a significant impact on crime rates.
数字技术最近变得更加先进,允许开发社交网络网站和应用程序。尽管取得了这些进步,但电话和短信仍然占据了移动数据使用量的最大比例。利用移动电话数据提供的有用信息,可以研究人类通信行为和移动模式。具体来说,大量移动设备留下的数字痕迹为各个领域的研究人员提供了重要信息,有助于更深入地了解人类行为和移动模式,这些领域包括犯罪学、城市感应、交通规划和医疗保健。移动电话数据记录了重要的时空(即地理空间和时间相关数据)和通信(即通话)信息。这些信息可用于实现不同的研究目标,并为各种实际应用提供基础,包括基于时空相互作用的人类移动模型、实时识别犯罪活动、推断友谊互动以及密度分布估计。本研究主要综述了利用移动电话数据研究、评估和预测犯罪预防背景下人类通信和移动模式的研究。这些研究旨在例如检测可疑活动、识别犯罪网络和预测犯罪,以及了解城市感应应用中的人类通信和移动模式。为此,对 2014 年至 2022 年间在八个电子数据库中列出的犯罪研究进行了系统的文献综述。在这项综述中,我们评估了基于移动电话数据的最近犯罪学应用中使用的最先进的方法和技术,以及利用这些信息预测犯罪和检测嫌疑犯的好处。文献综述的结果有助于提高人们对人口居住和社交方式的现有认识,以及如何根据他们的移动模式对个人进行分类。结果表明,与使用数据推断通信行为的研究相比,利用移动电话数据研究人类移动性和运动模式的研究数量呈指数级增长。这一观察结果可归因于获取通话记录详情(CDR)所涉及的隐私问题。此外,大多数研究都使用人口普查和调查数据进行数据验证。结果表明,社会网络分析工具和技术已被广泛用于检测犯罪网络和城市社区。此外,相关分析已被用于研究犯罪的时空模式,并且环境人口措施对犯罪率有重大影响。