Suppr超能文献

利用声发射、深度学习分解和预测机实现关节病变的早期和经济诊断。

On the Early and Affordable Diagnosis of Joint Pathologies Using Acoustic Emissions, Deep Learning Decompositions and Prediction Machines.

机构信息

Nsugbe Research Labs, Swindon SN1 3LG, UK.

Mechanical Innovation and Tribology Group, Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham B15 2TT, UK.

出版信息

Sensors (Basel). 2023 May 2;23(9):4449. doi: 10.3390/s23094449.

Abstract

The condition of a joint in a human being is prone to wear and several pathologies, particularly in the elderly and athletes. Current means towards assessing the overall condition of a joint to assess for a pathology involve using tools such as X-ray and magnetic resonance imaging, to name a couple. These expensive methods are of limited availability in resource-constrained environments and pose the risk of radiation exposure to the patient. The prospect of acoustic emissions (AEs) presents a modality that can monitor the joints' conditions passively by recording the high-frequency stress waves emitted during their motion. One of the main challenges associated with this sensing method is decoding and linking acquired AE signals to their source event. In this paper, we investigate AEs' use to identify five kinds of joint-wear pathologies using a contrast of expert-based handcrafted features and unsupervised feature learning via deep wavelet decomposition (DWS) alongside 12 machine learning models. The results showed an average classification accuracy of 90 ± 7.16% and 97 ± 3.77% for the handcrafted and DWS-based features, implying good prediction accuracies across the various devised approaches. Subsequent work will involve the potential application of regressions towards estimating the associated stage and extent of a wear condition where present, which can form part of an online system for the condition monitoring of joints in human beings.

摘要

人体关节的状况容易磨损,并且容易出现多种病变,尤其是在老年人和运动员中。目前评估关节整体状况以评估病变的方法包括使用 X 射线和磁共振成像等工具,仅举几例。这些昂贵的方法在资源有限的环境中可用性有限,并存在患者暴露于辐射的风险。声发射(AE)的出现提供了一种通过记录运动过程中发射的高频应变频带被动监测关节状况的方法。这种传感方法的一个主要挑战是解码并将获得的 AE 信号与其源事件相关联。在本文中,我们使用对比基于专家的手工制作特征和通过深度小波分解(DWS)进行无监督特征学习以及 12 个机器学习模型,研究了使用 AE 识别五种关节磨损病变的方法。结果表明,基于手工制作和 DWS 的特征的平均分类准确率分别为 90±7.16%和 97±3.77%,这表明各种方法的预测准确率都很好。后续工作将涉及潜在的回归应用,以估计存在的磨损状况的相关阶段和程度,这可以作为人体关节状况监测的在线系统的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/277d/10181577/512bc2d6e0f6/sensors-23-04449-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验