Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China.
Department of Radiology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.
J Magn Reson Imaging. 2024 Feb;59(2):483-493. doi: 10.1002/jmri.28770. Epub 2023 May 13.
The diagnosis of prenatal placenta accreta spectrum (PAS) with magnetic resonance imaging (MRI) is highly dependent on radiologists' experience. A deep learning (DL) method using the prior knowledge that PAS-related signs are generally found along the utero-placental borderline (UPB) may help radiologists, especially those with less experience, to mitigate this issue.
To develop a DL tool for antenatal diagnosis of PAS using T2-weighted MR images.
Retrospective.
Five hundred and forty pregnant women with clinically suspected PAS disorders from two institutions, divided into training (409), internal test (103), and external test (28) datasets.
FIELD STRENGTH/SEQUENCE: Sagittal T2-weighted fast spin echo sequence at 1.5 T and 3 T.
An nnU-Net was trained for placenta segmentation. The UPB straightening approach was used to extract the utero-placental boundary region. The UPB image was then fed into DenseNet-PAS for PAS diagnosis. DenseNet-PP learnt placental position information to improve the PAS diagnosis performance. Three radiologists with 8, 10, and 12 years of experience independently evaluated the images. Two radiologists marked the placenta tissue. Histopathological findings were the reference standard.
Area under the curve (AUC) was used to evaluate the classification. Dice coefficient evaluated the segmentation between radiologists and the model performance. The Mann-Whitney U-test or the chi-squared test assessed the significance of differences. Decision curve analysis was used to determine clinical effectiveness. DeLong's test was used to compare AUCs.
Of the 540 patients, 170 had PAS disorders confirmed by histopathology. The DL model using UPB images and placental position yielded the highest AUC of 0.860 and 0.897 in internal test and external test cohorts, respectively, significantly exceeding the performance of three radiologists (internal test AUC, 0.737-0.770).
By extracting the UPB image, this fully automatic DL pipeline achieved high accuracy and may assist radiologists in PAS diagnosis using MRI.
3 TECHNICAL EFFICACY: Stage 2.
磁共振成像(MRI)诊断产前胎盘植入谱系(PAS)高度依赖放射科医生的经验。一种使用 PAS 相关征象通常沿子宫胎盘边界(UPB)发现的先验知识的深度学习(DL)方法可以帮助放射科医生,特别是经验较少的医生,减轻这个问题。
开发一种使用 T2 加权 MR 图像进行产前 PAS 诊断的 DL 工具。
回顾性。
来自两个机构的 540 名有临床疑似 PAS 疾病的孕妇,分为训练(409)、内部测试(103)和外部测试(28)数据集。
磁场强度/序列:1.5T 和 3T 矢状 T2 加权快速自旋回波序列。
nnU-Net 用于胎盘分割。采用 UPB 拉直方法提取子宫胎盘边界区域。然后将 UPB 图像输入 DenseNet-PAS 进行 PAS 诊断。DenseNet-PP 学习胎盘位置信息以提高 PAS 诊断性能。三位放射科医生分别具有 8、10 和 12 年的经验,对图像进行独立评估。两位放射科医生标记胎盘组织。组织病理学发现是参考标准。
使用曲线下面积(AUC)评估分类。Dice 系数评估放射科医生和模型性能之间的分割。Mann-Whitney U 检验或卡方检验评估差异的显著性。决策曲线分析用于确定临床效果。DeLong 检验用于比较 AUC。
在 540 名患者中,有 170 名患者的 PAS 疾病通过组织病理学证实。使用 UPB 图像和胎盘位置的 DL 模型在内部测试和外部测试队列中分别获得了最高的 0.860 和 0.897 AUC,明显优于三位放射科医生的表现(内部测试 AUC,0.737-0.770)。
通过提取 UPB 图像,这种全自动 DL 流水线实现了高精度,可能有助于放射科医生使用 MRI 进行 PAS 诊断。
3 技术功效:2 级。