Suppr超能文献

机器学习在胎盘植入谱系疾病中的应用。

Machine learning applications in placenta accreta spectrum disorders.

作者信息

Danaei Mahsa, Yeganegi Maryam, Azizi Sepideh, Jayervand Fatemeh, Shams Seyedeh Elham, Sharifi Mohammad Hossein, Bahrami Reza, Masoudi Ali, Shahbazi Amirhossein, Shiri Amirmasoud, Rashnavadi Heewa, Aghili Kazem, Neamatzadeh Hossein

机构信息

Department of Obstetrics and Gynecology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.

Department of Obstetrics and Gynecology, Iranshahr University of Medical Sciences, Iranshahr, Iran.

出版信息

Eur J Obstet Gynecol Reprod Biol X. 2024 Dec 24;25:100362. doi: 10.1016/j.eurox.2024.100362. eCollection 2025 Mar.

Abstract

This review examines the emerging applications of machine learning (ML) and radiomics in the diagnosis and prediction of placenta accreta spectrum (PAS) disorders, addressing a significant challenge in obstetric care. It highlights recent advancements in ML algorithms and radiomic techniques that utilize medical imaging modalities like magnetic resonance imaging (MRI) and ultrasound for effective classification and risk stratification of PAS. The review discusses the efficacy of various deep learning models, such as nnU-Net and DenseNet-PAS, which have demonstrated superior performance over traditional diagnostic methods through high AUC scores. Furthermore, it underscores the importance of integrating quantitative imaging features with clinical data to enhance diagnostic accuracy and optimize surgical planning. The potential of ML to predict surgical morbidity by analyzing demographic and obstetric factors is also explored. Emphasizing the need for standardized methodologies to ensure consistent feature extraction and model performance, this review advocates for the integration of radiomics and ML into clinical workflows, aiming to improve patient outcomes and foster a multidisciplinary approach in high-risk pregnancies. Future research should focus on larger datasets and validation of biomarkers to refine predictive models in obstetric care.

摘要

本综述探讨了机器学习(ML)和放射组学在胎盘植入谱系障碍(PAS)诊断和预测中的新兴应用,这些应用解决了产科护理中的一项重大挑战。它强调了ML算法和放射组学技术的最新进展,这些技术利用磁共振成像(MRI)和超声等医学成像模态对PAS进行有效分类和风险分层。该综述讨论了各种深度学习模型的功效,如nnU-Net和DenseNet-PAS,这些模型通过高AUC分数显示出优于传统诊断方法的性能。此外,它强调了将定量成像特征与临床数据相结合以提高诊断准确性和优化手术规划的重要性。还探讨了ML通过分析人口统计学和产科因素预测手术并发症的潜力。本综述强调了采用标准化方法以确保一致的特征提取和模型性能的必要性,提倡将放射组学和ML整合到临床工作流程中,旨在改善患者预后并在高危妊娠中促进多学科方法。未来的研究应专注于更大的数据集和生物标志物的验证,以完善产科护理中的预测模型。

相似文献

1
Machine learning applications in placenta accreta spectrum disorders.机器学习在胎盘植入谱系疾病中的应用。
Eur J Obstet Gynecol Reprod Biol X. 2024 Dec 24;25:100362. doi: 10.1016/j.eurox.2024.100362. eCollection 2025 Mar.

本文引用的文献

3
Caesarean section and respiratory system disorders in newborns.新生儿剖宫产与呼吸系统疾病
Eur J Obstet Gynecol Reprod Biol X. 2024 Aug 10;23:100336. doi: 10.1016/j.eurox.2024.100336. eCollection 2024 Sep.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验