Suppr超能文献

深度学习 MRI 放射组学分析联合临床特征诊断胎盘植入谱系及其亚型。

Deep Learning Radiomic Analysis of MRI Combined with Clinical Characteristics Diagnoses Placenta Accreta Spectrum and its Subtypes.

机构信息

Department of Radiology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China.

Medical AI Lab, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China.

出版信息

J Magn Reson Imaging. 2024 Dec;60(6):2705-2715. doi: 10.1002/jmri.29317. Epub 2024 Feb 23.

Abstract

BACKGROUND

Different placenta accreta spectrum (PAS) subtypes pose varying surgical risks to the parturient. Machine learning model has the potential to diagnose PAS disorder.

PURPOSE

To develop a cascaded deep semantic-radiomic-clinical (DRC) model for diagnosing PAS and its subtypes based on T2-weighted MRI.

STUDY TYPE

Retrospective.

POPULATION

361 pregnant women (mean age: 33.10 ± 4.37 years), suspected of PAS, divided into segment training cohort (N = 40), internal training cohort (N = 139), internal testing cohort (N = 60), and external testing cohort (N = 122).

FIELD STRENGTH/SEQUENCE: Coronal T2-weighted sequence at 1.5 T and 3.0 T.

ASSESSMENT

Clinical characteristics such as history of uterine surgery and the presence of placenta previa, complete placenta previa and dangerous placenta previa were extracted from clinical records. The DRC model (incorporating radiomics, deep semantic features, and clinical characteristics), a cumulative radiological score method performed by radiologists, and other models (including a radiomics and clinical, the clinical, radiomics and deep learning models) were developed for PAS disorder diagnosing (existence of PAS and its subtypes).

STATISTICAL TESTS

AUC, ACC, Student's t-test, the Mann-Whitney U test, chi-squared test, dice coefficient, intraclass correlation coefficients, least absolute shrinkage and selection operator regression, receiver operating characteristic curve, calibration curve with the Hosmer-Lemeshow test, decision curve analysis, DeLong test, and McNemar test. P < 0.05 indicated a significant difference.

RESULTS

In PAS diagnosis, the DRC-1 outperformed than other models (AUC = 0.850 and 0.841 in internal and external testing cohorts, respectively). In PAS subtype classification (abnormal adherent placenta and abnormal invasive placenta), DRC-2 model performed similarly with radiologists (P = 0.773 and 0.579 in the internal testing cohort and P = 0.429 and 0.874 in the external testing cohort, respectively).

DATA CONCLUSION

The DRC model offers efficiency and high diagnostic sensitivity in diagnosis, aiding in surgical planning.

LEVEL OF EVIDENCE

3 TECHNICAL EFFICACY: Stage 2.

摘要

背景

不同的胎盘植入谱(PAS)亚型对产妇的手术风险不同。机器学习模型有可能诊断 PAS 障碍。

目的

基于 T2 加权 MRI 开发一种级联的深度语义放射组学临床(DRC)模型,用于诊断 PAS 及其亚型。

研究类型

回顾性。

人群

361 名疑似 PAS 的孕妇(平均年龄:33.10±4.37 岁),分为节段训练队列(N=40)、内部训练队列(N=139)、内部测试队列(N=60)和外部测试队列(N=122)。

磁场强度/序列:1.5T 和 3.0T 的冠状 T2 加权序列。

评估

从临床记录中提取临床特征,如子宫手术史、胎盘前置、完全性胎盘前置和危险性胎盘前置。开发了 DRC 模型(纳入放射组学、深度语义特征和临床特征)、放射科医生进行的累积放射评分方法以及其他模型(包括放射组学和临床、临床、放射组学和深度学习模型),用于 PAS 障碍诊断(存在 PAS 和其亚型)。

统计检验

AUC、ACC、Student's t 检验、Mann-Whitney U 检验、卡方检验、Dice 系数、组内相关系数、最小绝对收缩和选择算子回归、受试者工作特征曲线、Hosmer-Lemeshow 检验的校准曲线、决策曲线分析、DeLong 检验和 McNemar 检验。P<0.05 表示差异有统计学意义。

结果

在 PAS 诊断中,DRC-1 优于其他模型(内部和外部测试队列的 AUC 分别为 0.850 和 0.841)。在 PAS 亚型分类(异常附着胎盘和异常侵袭性胎盘)中,DRC-2 模型与放射科医生的表现相似(内部测试队列的 P=0.773 和 0.579,外部测试队列的 P=0.429 和 0.874)。

数据结论

DRC 模型在诊断中提供了效率和高诊断敏感性,有助于手术计划。

证据水平

3 技术功效:阶段 2。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验