Suppr超能文献

N-SrTiO/NHVO S 型光催化剂增强磺胺甲恶唑的光降解:DFT 计算与光催化机理研究。

Enhanced sulfamethoxazole photodegradation by N-SrTiO/NHVO S-scheme photocatalyst: DFT calculation and photocatalytic mechanism insight.

机构信息

School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.

Micro/Nanotechnology Research Centre, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.

出版信息

J Colloid Interface Sci. 2023 Sep;645:860-869. doi: 10.1016/j.jcis.2023.05.037. Epub 2023 May 9.

Abstract

In this study, we synthesized a N-SrTiO/NHVO S-scheme photocatalyst by modifying NHVO nanosheets with various proportions of N-doped SrTiO nanoparticles using a mild hydrothermal method.Density Functional Theory(DFT) calculations were employed to elucidate thephotocatalytic mechanism, while the electron-hole transfer and separation of the S-type heterojunction were further characterized experimentally. The photocatalyst was applied to the photodegradation of sulfamethoxazole (SMX), a common water pollutant. Among all the prepared photocatalysts, 30 wt% N-SrTiO/NHVO (NSN-30) displayed the highest photocatalytic performance. This was attributed to the facile electron transfer mechanism of the S-scheme heterojunction, which facilitated the effective separation of electron-holes and preserved the strong redox property of the catalyst. The possible intermediates anddegradation pathwaysin thephotocatalytic systemwere explored usingelectron paramagnetic resonance(EPR) and DFT calculations. Our findings demonstrate the potential of semiconductor catalysts to remove antibiotics from aqueous environments usinggreen energy.

摘要

在这项研究中,我们通过使用温和的水热法,用不同比例的氮掺杂 SrTiO3 纳米粒子修饰 NHVO 纳米片,合成了一种 N-SrTiO3/NHVO4 S 型方案光催化剂。采用密度泛函理论(DFT)计算阐明了光催化机理,同时实验进一步表征了电子空穴转移和 S 型异质结的分离。该光催化剂被应用于常见水污染物磺胺甲恶唑(SMX)的光降解。在所有制备的光催化剂中,30wt% N-SrTiO3/NHVO4(NSN-30)表现出最高的光催化性能。这归因于 S 型异质结的易于电子转移机制,这促进了电子-空穴的有效分离并保持了催化剂的强氧化还原性质。使用电子顺磁共振(EPR)和 DFT 计算探索了光催化体系中的可能中间体和降解途径。我们的研究结果表明,半导体催化剂具有利用绿色能源从水环境中去除抗生素的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验