Suppr超能文献

n-p-n 型异质结 CoO/MIL/Mn-STO 中的协同界面工程,具有双重 S 型多电荷迁移,增强了可见光下抗生素的光催化降解。

Synergistic interface engineering in n-p-n type heterojunction CoO/MIL/Mn-STO with dual S-scheme multi-charge migration to enhance visible-light photocatalytic degradation of antibiotics.

机构信息

School of Advanced Chemical Sciences, Shoolini University, Solan (Himachal Pradesh)- 8, 173229, India.

Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland.

出版信息

Environ Res. 2024 Jan 1;240(Pt 1):117481. doi: 10.1016/j.envres.2023.117481. Epub 2023 Oct 27.

Abstract

Constructing an effective multi-heterojunction photocatalyst with maximum charge carrier separation remains challenging. Herein, a high-efficient CoO/MIL-88A/Mn-SrTiO (CoO/MIL/Mn-STO) n-p-n heterojunction photocatalyst was successfully prepared by a simple hydrothermal method for the photodegradation of sulfamethoxazole (SMX). The combination of MIL and CoO/Mn-STO established an internal electric field and heterojunction, accelerating the separation of carriers, and thus improved photocatalytic performance. In the CoO/MIL/Mn-STO photocatalytic system, 95.5 % of SMX was degraded in 90 min. The photocatalytic kinetic removal rate of CoO/MIL/Mn-STO reached 0.0337 min, 8 times of CoO (0.0041 min), 5.2 times of Mn-STO (0.0062 min), 4.6 times of MIL (0.0078 min), and 3.6 times of MIL/Mn-STO (0.0095 min). Remarkably, superoxide radicals (O) and holes (h) have been recognized as the main active species in the degradation process through reactive species elimination experiments and electron spin resonance (ESR) tests. The experimental and theoretical proved the in-built interfacial contact and synergistic effect between the photocatalyst accomplished with low bandgaps, high specific surface area, more reaction sites, high electron-hole pair separation, and maximum solar-light utilization. The molecular structure and possible degradation routes with intermediate products in the photocatalytic system were investigated using a liquid chromatography-mass spectrometer (LC-MS) and DFT calculations. This work provided new insight into the guidelines of rational design/growth of new multicomponent photocatalysts to remove antibiotics and other emerging contaminants in wastewater.

摘要

构建具有最大电荷载流子分离的有效多异质结光催化剂仍然具有挑战性。在此,通过简单的水热法成功制备了高效的 CoO/MIL-88A/Mn-SrTiO(CoO/MIL/Mn-STO)n-p-n 异质结光催化剂,用于磺胺甲恶唑(SMX)的光降解。MIL 与 CoO/Mn-STO 的结合建立了内电场和异质结,加速了载流子的分离,从而提高了光催化性能。在 CoO/MIL/Mn-STO 光催化体系中,SMX 在 90 分钟内降解了 95.5%。CoO/MIL/Mn-STO 光催化动力学去除率达到 0.0337 min,是 CoO(0.0041 min)的 8 倍,Mn-STO(0.0062 min)的 5.2 倍,MIL(0.0078 min)的 4.6 倍,以及 MIL/Mn-STO(0.0095 min)的 3.6 倍。值得注意的是,通过活性物种消除实验和电子自旋共振(ESR)测试,确认超氧自由基(O)和空穴(h)是降解过程中的主要活性物质。实验和理论证明了低带隙、高比表面积、更多反应位点、高电子-空穴对分离和最大太阳光利用的光催化剂内置界面接触和协同效应。通过液相色谱-质谱(LC-MS)和 DFT 计算研究了光催化体系中分子结构和可能的降解途径以及中间产物。这项工作为合理设计/生长新的多组分光催化剂以去除废水中抗生素和其他新兴污染物提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验