Suppr超能文献

碳负载铜基体系上CO电催化加氢中的界面化学

Interfacial Chemistry in the Electrocatalytic Hydrogenation of CO over C-Supported Cu-Based Systems.

作者信息

Gianolio Diego, Higham Michael D, Quesne Matthew G, Aramini Matteo, Xu Ruoyu, Large Alex I, Held Georg, Velasco-Vélez Juan-Jesús, Haevecker Michael, Knop-Gericke Axel, Genovese Chiara, Ampelli Claudio, Schuster Manfred Erwin, Perathoner Siglinda, Centi Gabriele, Catlow C Richard A, Arrigo Rosa

机构信息

Diamond Light Source Ltd., Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.

Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, Wales CF10 3AT, U.K.

出版信息

ACS Catal. 2023 Apr 14;13(9):5876-5895. doi: 10.1021/acscatal.3c01288. eCollection 2023 May 5.

Abstract

Operando soft and hard X-ray spectroscopic techniques were used in combination with plane-wave density functional theory (DFT) simulations to rationalize the enhanced activities of Zn-containing Cu nanostructured electrocatalysts in the electrocatalytic CO hydrogenation reaction. We show that at a potential for CO hydrogenation, Zn is alloyed with Cu in the bulk of the nanoparticles with no metallic Zn segregated; at the interface, low reducible Cu(I)-O species are consumed. Additional spectroscopic features are observed, which are identified as various surface Cu(I) ligated species; these respond to the potential, revealing characteristic interfacial dynamics. Similar behavior was observed for the Fe-Cu system in its active state, confirming the general validity of this mechanism; however, the performance of this system deteriorates after successive applied cathodic potentials, as the hydrogen evolution reaction then becomes the main reaction pathway. In contrast to an active system, Cu(I)-O is now consumed at cathodic potentials and not reversibly reformed when the voltage is allowed to equilibrate at the open-circuit voltage; rather, only the oxidation to Cu(II) is observed. We show that the Cu-Zn system represents the optimal active ensembles with stabilized Cu(I)-O; DFT simulations rationalize this observation by indicating that Cu-Zn-O neighboring atoms are able to activate CO, whereas Cu-Cu sites provide the supply of H atoms for the hydrogenation reaction. Our results demonstrate an electronic effect exerted by the heterometal, which depends on its intimate distribution within the Cu phase and confirms the general validity of these mechanistic insights for future electrocatalyst design strategies.

摘要

采用原位软X射线和硬X射线光谱技术,并结合平面波密度泛函理论(DFT)模拟,以阐明含锌铜纳米结构电催化剂在电催化CO加氢反应中活性增强的原因。我们发现,在CO加氢的电位下,Zn与纳米颗粒本体中的Cu形成合金,没有金属Zn偏析;在界面处,低还原性的Cu(I)-O物种被消耗。观察到了额外的光谱特征,这些特征被确定为各种表面Cu(I)连接物种;它们对电位有响应,揭示了特征性的界面动力学。在铁-铜体系的活性状态下也观察到了类似的行为,证实了该机制的普遍有效性;然而,在连续施加阴极电位后,该体系的性能会下降,因为析氢反应随后成为主要反应途径。与活性体系不同,现在Cu(I)-O在阴极电位下被消耗,当电压在开路电压下达到平衡时不会可逆地重新形成;相反,只观察到氧化为Cu(II)。我们表明,Cu-Zn体系代表了具有稳定Cu(I)-O的最佳活性组合;DFT模拟通过表明Cu-Zn-O相邻原子能够激活CO,而Cu-Cu位点为加氢反应提供H原子供应,从而解释了这一观察结果。我们的结果证明了异质金属所施加的电子效应,这取决于其在Cu相中的紧密分布,并证实了这些机理见解对未来电催化剂设计策略的普遍有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cda/10167656/7ba2aa6ac716/cs3c01288_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验