Suppr超能文献

1,6-二苯基-1,3,5-己三烯对机械刺激的多种响应:发射增强、压致变色和负线性压缩性。

Multiple responses of 1,6-diphenyl-1,3,5-hexatriene to mechanical stimulation: emission enhancement, piezochromism and negative linear compressibility.

作者信息

Fu Zhiyuan, Yang Zhiqiang, Yang Xinyi, Wang Kai, Zou Bo

机构信息

State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 P. R. China

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China.

出版信息

Chem Sci. 2023 Mar 30;14(18):4817-4823. doi: 10.1039/d3sc00482a. eCollection 2023 May 10.

Abstract

The properties of mechanoresponsive materials are mainly affected by intermolecular interaction, in which anisotropic grinding and hydrostatic high-pressure compression are the powerful tools used for modulation. Upon applying high pressure to 1,6-diphenyl-1,3,5-hexatriene (DPH), the reduced molecular symmetry results in the originally forbidden S → S transition to become allowed that then leads to a 13-times emission enhancement, and π-π interactions result in piezochromism (red-shifted up to 100 nm). With increasing pressure, high-pressure-stiffened H⋯C/C⋯H and H⋯H interactions enable the DPH molecules to generate a NLC mechanical response (9-15 GPa) with = -5.8764 TPa along the -axis. As a contrast, upon destroying the intermolecular interactions by grinding, the DPH luminescence blue-shifts from cyan to blue. Based on this research, we investigate a new pressure-induced emission enhancement (PIEE) mechanism and enabled NLC phenomena by controlling weak intermolecular interactions. In-depth research of the evolution of intermolecular interactions has important reference value for developing new fluorescence materials and structural materials.

摘要

机械响应材料的性能主要受分子间相互作用的影响,其中各向异性研磨和静水高压压缩是用于调控的有力工具。对1,6-二苯基-1,3,5-己三烯(DPH)施加高压时,分子对称性降低导致原本禁阻的S→S跃迁变为允许跃迁,进而使发射增强13倍,且π-π相互作用导致压致变色(红移高达100 nm)。随着压力增加,高压增强的H⋯C/C⋯H和H⋯H相互作用使DPH分子沿z轴产生具有-5.8764 TPa的介晶相机械响应(9 - 15 GPa)。相比之下,通过研磨破坏分子间相互作用时,DPH的发光从青色蓝移至蓝色。基于此研究,我们通过控制弱分子间相互作用研究了一种新的压力诱导发射增强(PIEE)机制并实现了介晶相现象。深入研究分子间相互作用的演变对开发新型荧光材料和结构材料具有重要参考价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d822/10171183/4f33b0280f1e/d3sc00482a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验