Suppr超能文献

联合使用 MDM2 和 MEK 抑制剂在同时存在致癌驱动和 MDM2 扩增的肺腺癌患者来源模型中具有疗效。

Combination Therapy With MDM2 and MEK Inhibitors Is Effective in Patient-Derived Models of Lung Adenocarcinoma With Concurrent Oncogenic Drivers and MDM2 Amplification.

机构信息

Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.

Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.

出版信息

J Thorac Oncol. 2023 Sep;18(9):1165-1183. doi: 10.1016/j.jtho.2023.05.007. Epub 2023 May 13.

Abstract

INTRODUCTION

Although targeted therapies have revolutionized the therapeutic landscape of lung adenocarcinomas (LUADs), disease progression on single-agent targeted therapy against known oncogenic drivers is common, and therapeutic options after disease progression are limited. In patients with MDM2 amplification (MDM2amp) and a concurrent oncogenic driver alteration, we hypothesized that targeting of the tumor-suppressor pathway (by means of restoration of p53 using MDM2 inhibition) and simultaneous targeting of co-occurring MAPK oncogenic pathway might represent a more durably effective therapeutic strategy.

METHODS

We evaluated genomic next-generation sequencing data using the Memorial Sloan Kettering Cancer Center-Integrated Mutation Profiling of Actionable Cancer Targets platform to nominate potential targets for combination therapy in LUAD. We investigated the small molecule MDM2 inhibitor milademetan in cell lines and patient-derived xenografts of LUAD with a known driver alteration and MDM2amp.

RESULTS

Of 10,587 patient samples from 7121 patients with LUAD profiled by next-generation sequencing, 6% (410 of 7121) harbored MDM2amp. MDM2amp was significantly enriched among tumors with driver alterations in METex14 (36%, p < 0.001), EGFR (8%, p < 0.001), RET (12%, p < 0.01), and ALK (10%, p < 0.01). The combination of milademetan and the MEK inhibitor trametinib was synergistic in growth inhibition of ECLC5-GLx (TRIM33-RET/MDM2amp), LUAD12c (METex14/KRAS/MDM2amp), SW1573 (KRAS, TP53 wild type), and A549 (KRAS) cells and in increasing expression of proapoptotic proteins PUMA and BIM. Treatment of ECLC5-GLx and LUAD12c with single-agent milademetan increased ERK phosphorylation, consistent with previous data on ERK activation with MDM2 inhibition. This ERK activation was effectively suppressed by concomitant administration of trametinib. In contrast, ERK phosphorylation induced by milademetan was not suppressed by concurrent RET inhibition using selpercatinib (in ECLC5-GLx) or MET inhibition using capmatinib (in LUAD12c). In vivo, combination milademetan and trametinib was more effective than either agent alone in ECLC5-GLx, LX-285 (EGFRex19del/MDM2amp), L13BS1 (METex14/MDM2amp), and A549 (KRAS, TP53 wild type).

CONCLUSIONS

Combined MDM2/MEK inhibition was found to have efficacy across multiple patient-derived LUAD models harboring MDM2amp and concurrent oncogenic drivers. This combination, potentially applicable to LUADs with a wide variety of oncogenic driver mutations and kinase fusions activating the MAPK pathway, has evident clinical implications and will be investigated as part of a planned phase 1/2 clinical trial.

摘要

简介

虽然靶向治疗已经彻底改变了肺腺癌(LUAD)的治疗格局,但针对已知致癌驱动基因的单一靶向治疗后疾病进展是常见的,疾病进展后的治疗选择有限。在 MDM2 扩增(MDM2amp)和同时存在致癌驱动基因改变的患者中,我们假设针对肿瘤抑制通路(通过 MDM2 抑制恢复 p53)和同时针对同时发生的 MAPK 致癌通路的靶向治疗可能代表更持久有效的治疗策略。

方法

我们使用 Memorial Sloan Kettering 癌症中心综合行动癌症靶标基因测序平台评估了基因组下一代测序数据,以提名 LUAD 联合治疗的潜在靶点。我们研究了已知驱动基因改变和 MDM2amp 的 LUAD 细胞系和患者来源的异种移植物中使用小分子 MDM2 抑制剂米达美坦。

结果

在通过下一代测序对 7121 名 LUAD 患者进行的 10587 名患者样本中,6%(410/7121)存在 MDM2amp。MDM2amp 在具有 METex14(36%,p < 0.001)、EGFR(8%,p < 0.001)、RET(12%,p < 0.01)和 ALK(10%,p < 0.01)驱动改变的肿瘤中明显富集。米达美坦和 MEK 抑制剂曲美替尼联合使用可协同抑制 ECLC5-GLx(TRIM33-RET/MDM2amp)、LUAD12c(METex14/KRAS/MDM2amp)、SW1573(KRAS、TP53 野生型)和 A549(KRAS)细胞的生长,并增加促凋亡蛋白 PUMA 和 BIM 的表达。在 ECLC5-GLx 和 LUAD12c 中单独使用米达美坦可增加 ERK 磷酸化,这与先前关于 MDM2 抑制激活 ERK 的数据一致。这种 ERK 激活可通过同时给予 trametinib 有效抑制。相比之下,米达美坦诱导的 ERK 磷酸化在 ECLC5-GLx 中使用 selpercatinib(针对 RET)或 LUAD12c 中使用 capmatinib(针对 MET)抑制时未被 concurrent RET 抑制所抑制。在体内,与单独使用任一药物相比,米达美坦联合 trametinib 在 ECLC5-GLx、LX-285(EGFRex19del/MDM2amp)、L13BS1(METex14/MDM2amp)和 A549(KRAS、TP53 野生型)中更有效。

结论

联合使用 MDM2/MEK 抑制剂在多种携带 MDM2amp 和同时存在致癌驱动基因的患者来源 LUAD 模型中显示出疗效。这种联合治疗可能适用于具有多种致癌驱动基因突变和激活 MAPK 通路的激酶融合的 LUAD,具有明显的临床意义,并将作为计划中的 1/2 期临床试验的一部分进行研究。

相似文献

3
Synergistic activity and heterogeneous acquired resistance of combined MDM2 and MEK inhibition in KRAS mutant cancers.
Oncogene. 2017 Nov 23;36(47):6581-6591. doi: 10.1038/onc.2017.258. Epub 2017 Aug 7.
4
Comparative Analysis and Isoform-Specific Therapeutic Vulnerabilities of KRAS Mutations in Non-Small Cell Lung Cancer.
Clin Cancer Res. 2022 Apr 14;28(8):1640-1650. doi: 10.1158/1078-0432.CCR-21-2719.
5
Activation of KRAS Mediates Resistance to Targeted Therapy in MET Exon 14-mutant Non-small Cell Lung Cancer.
Clin Cancer Res. 2019 Feb 15;25(4):1248-1260. doi: 10.1158/1078-0432.CCR-18-1640. Epub 2018 Oct 23.
6
SOS1 and KSR1 modulate MEK inhibitor responsiveness to target resistant cell populations based on PI3K and KRAS mutation status.
Proc Natl Acad Sci U S A. 2023 Nov 21;120(47):e2313137120. doi: 10.1073/pnas.2313137120. Epub 2023 Nov 16.
7
An integrative pharmacogenomics analysis identifies therapeutic targets in KRAS-mutant lung cancer.
EBioMedicine. 2019 Nov;49:106-117. doi: 10.1016/j.ebiom.2019.10.012. Epub 2019 Oct 23.
8
Metastatic Melanoma Patient-Derived Xenografts Respond to MDM2 Inhibition as a Single Agent or in Combination with BRAF/MEK Inhibition.
Clin Cancer Res. 2020 Jul 15;26(14):3803-3818. doi: 10.1158/1078-0432.CCR-19-1895. Epub 2020 Mar 31.
9
Assessing Therapeutic Efficacy of MEK Inhibition in a KRAS-Driven Mouse Model of Lung Cancer.
Clin Cancer Res. 2018 Oct 1;24(19):4854-4864. doi: 10.1158/1078-0432.CCR-17-3438. Epub 2018 Jun 26.

引用本文的文献

1
ZNF146 accelerates lung adenocarcinoma progression through MDM2/p53 and PHGDH/ferroptosis.
Cell Biosci. 2025 Jun 28;15(1):94. doi: 10.1186/s13578-025-01433-7.
2
Fatty acid metabolism-derived prognostic model for lung adenocarcinoma: unraveling the link to survival and immune response.
Front Immunol. 2025 Mar 13;16:1507845. doi: 10.3389/fimmu.2025.1507845. eCollection 2025.
4
Patient-derived xenograft model in cancer: establishment and applications.
MedComm (2020). 2025 Jan 19;6(2):e70059. doi: 10.1002/mco2.70059. eCollection 2025 Feb.
8
Advances of E3 ligases in lung cancer.
Biochem Biophys Rep. 2024 May 27;38:101740. doi: 10.1016/j.bbrep.2024.101740. eCollection 2024 Jul.
9
Oncogene goosecoid is transcriptionally regulated by E2F1 and correlates with disease progression in prostate cancer.
Chin Med J (Engl). 2024 Aug 5;137(15):1844-1856. doi: 10.1097/CM9.0000000000002865. Epub 2023 Nov 24.

本文引用的文献

1
2
Targeting KRAS-mutant stomach/colorectal tumors by disrupting the ERK2-p53 complex.
Cell Rep. 2023 Jan 31;42(1):111972. doi: 10.1016/j.celrep.2022.111972. Epub 2023 Jan 14.
4
FACETS: Fraction and Allele-Specific Copy Number Estimates from Tumor Sequencing.
Methods Mol Biol. 2022;2493:89-105. doi: 10.1007/978-1-0716-2293-3_7.
5
Adagrasib in Non-Small-Cell Lung Cancer Harboring a Mutation.
N Engl J Med. 2022 Jul 14;387(2):120-131. doi: 10.1056/NEJMoa2204619. Epub 2022 Jun 3.
6
MET Exon 14 Splice-Site Mutations Preferentially Activate KRAS Signaling to Drive Tumourigenesis.
Cancers (Basel). 2022 Mar 8;14(6):1378. doi: 10.3390/cancers14061378.
7
The evolution of RET inhibitor resistance in RET-driven lung and thyroid cancers.
Nat Commun. 2022 Mar 18;13(1):1450. doi: 10.1038/s41467-022-28848-x.
8
The Transcription Factor IRF9 Promotes Colorectal Cancer via Modulating the IL-6/STAT3 Signaling Axis.
Cancers (Basel). 2022 Feb 12;14(4):919. doi: 10.3390/cancers14040919.
9
Resistance mechanisms to inhibitors of p53-MDM2 interactions in cancer therapy: can we overcome them?
Cell Mol Biol Lett. 2021 Dec 15;26(1):53. doi: 10.1186/s11658-021-00293-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验