School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China.
Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano, Technische Universität Ilmenau, Ilmenau 98693, Germany.
ACS Appl Mater Interfaces. 2023 May 24;15(20):24459-24469. doi: 10.1021/acsami.3c02404. Epub 2023 May 15.
Carbon materials have been the most common anodes for sodium-ion storage. However, it is well-known that most carbon materials cannot obtain a satisfactory rate performance because of the sluggish kinetics of large-sized sodium-ion intercalation in ordered carbon layers. Here, we propose an integration of co-intercalation and adsorption instead of conventional simplex-intercalation and adsorption to promote the rate capability of sodium-ion storage in carbon materials. The experiment was demonstrated by using a typical carbon material, reduced graphite oxide (RGO400) in an ether-solvent electrolyte. The ordered and disordered carbon layers efficiently store solvated sodium ions and simplex sodium ions, which endows RGO400 with enhanced reversible capacity (403 mA h g at 50 mA g after 100 cycles) and superior rate performance (166 mA h g at 20 A g). Furthermore, a symmetric sodium-ion capacitor was demonstrated by employing RGO400 as both the anode and cathode. It exhibits a high energy density of 48 W h g at a very high power density of 10,896 W kg. This work updates the sodium-ion storage mechanism and provides a rational strategy to realize high rate capability for carbon electrode materials.
碳材料一直是钠离子存储的最常用的阳极。然而,众所周知,由于在有序碳层中钠离子的大尺寸嵌入动力学较慢,大多数碳材料都无法获得令人满意的倍率性能。在这里,我们提出了共嵌入和吸附的整合,而不是传统的单嵌入和吸附,以促进碳材料中钠离子存储的倍率性能。实验通过在醚溶剂电解质中使用典型的碳材料还原氧化石墨(RGO400)来证明。有序和无序的碳层有效地存储溶剂化钠离子和单原子钠离子,这赋予了 RGO400 增强的可逆容量(在 50 mA g 下循环 100 次后为 403 mA h g)和优异的倍率性能(在 20 A g 下为 166 mA h g)。此外,通过使用 RGO400 作为阳极和阴极,展示了一种对称的钠离子电容器。它在非常高的功率密度 10896 W kg 下表现出 48 W h g 的高能量密度。这项工作更新了钠离子存储机制,并提供了一种实现碳电极材料高倍率性能的合理策略。