Suppr超能文献

一种肺特异性突变特征可用于推断病毒和细菌的呼吸生态位。

A lung-specific mutational signature enables inference of viral and bacterial respiratory niche.

机构信息

Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK.

Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.

出版信息

Microb Genom. 2023 May;9(5). doi: 10.1099/mgen.0.001018.

Abstract

Exposure to different mutagens leaves distinct mutational patterns that can allow inference of pathogen replication niches. We therefore investigated whether SARS-CoV-2 mutational spectra might show lineage-specific differences, dependent on the dominant site(s) of replication and onwards transmission, and could therefore rapidly infer virulence of emergent variants of concern (VOCs). Through mutational spectrum analysis, we found a significant reduction in G>T mutations in the Omicron variant, which replicates in the upper respiratory tract (URT), compared to other lineages, which replicate in both the URT and lower respiratory tract (LRT). Mutational analysis of other viruses and bacteria indicates a robust, generalizable association of high G>T mutations with replication within the LRT. Monitoring G>T mutation rates over time, we found early separation of Omicron from Beta, Gamma and Delta, while mutational patterns in Alpha varied consistent with changes in transmission source as social restrictions were lifted. Mutational spectra may be a powerful tool to infer niches of established and emergent pathogens.

摘要

暴露于不同的诱变剂会产生不同的突变模式,这可以帮助推断病原体的复制生态位。因此,我们研究了 SARS-CoV-2 的突变谱是否可能因主要的复制和传播部位而表现出谱系特异性差异,并且能否快速推断出新兴关注变体 (VOCs) 的毒力。通过突变谱分析,我们发现与在上呼吸道 (URT) 中复制的其他谱系相比,在复制于 URT 的奥密克戎变体中,G>T 突变显著减少。对其他病毒和细菌的突变分析表明,高 G>T 突变与 LRT 内的复制之间存在稳健的、可普遍应用的关联。随着时间的推移监测 G>T 突变率,我们发现奥密克戎与 Beta、Gamma 和 Delta 很早就分离开来,而 Alpha 的突变模式则与其传播源的变化一致,因为社会限制被取消。突变谱可能是推断已建立和新兴病原体的生态位的有力工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/387e/10272861/96fb14602e3e/mgen-9-1018-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验