Li Jie, Liu Tao, McIlroy Simon J, Tyson Gene W, Guo Jianhua
Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD, Australia.
Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD, Australia.
ISME Commun. 2023 Apr 25;3(1):39. doi: 10.1038/s43705-023-00246-4.
The microbial guild coupling anammox and nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) is an innovative process to achieve energy-efficient nitrogen removal with the beneficial use of methane in biogas or in anaerobically treated wastewater. Here, metagenomics and metatranscriptomics were used to reveal the microbial ecology of two biofilm systems, which incorporate anammox and n-DAMO for high-level nitrogen removal in low-strength domestic sewage and high-strength sidestream wastewater, respectively. We find that different nitrogen loadings (i.e., 0.1 vs. 1.0 kg N/m/d) lead to different combinations of anammox bacteria and anaerobic methanotrophs ("Candidatus Methanoperedens" and "Candidatus Methylomirabilis"), which play primary roles for carbon and nitrogen transformations therein. Despite methane being the only exogenous organic carbon supplied, heterotrophic populations (e.g., Verrucomicrobiota and Bacteroidota) co-exist and actively perform partial denitrification or dissimilatory nitrate reduction to ammonium (DNRA), likely using organic intermediates from the breakdown of methane and biomass as carbon sources. More importantly, two novel genomes belonging to "Ca. Methylomirabilis" are recovered, while one surprisingly expresses nitrate reductases, which we designate as "Ca. Methylomirabilis nitratireducens" representing its inferred capability in performing nitrate-dependent anaerobic methane oxidation. This finding not only suggests a previously neglected possibility of "Ca. Methylomirabilis" bacteria in performing methane-dependent nitrate reduction, and also challenges the previous understanding that the methane-dependent complete denitrification from nitrate to dinitrogen gas is carried out by the consortium of bacteria and archaea.
耦合厌氧氨氧化与亚硝酸盐/硝酸盐依赖型厌氧甲烷氧化(n-DAMO)的微生物群落是一种创新工艺,可在生物气或厌氧处理废水中有益地利用甲烷,实现高效节能的氮去除。在此,利用宏基因组学和宏转录组学揭示了两个生物膜系统的微生物生态学,这两个系统分别结合了厌氧氨氧化和n-DAMO,用于在低强度生活污水和高强度侧流废水中实现高水平的氮去除。我们发现,不同的氮负荷(即0.1对1.0 kg N/m³/d)导致厌氧氨氧化细菌和厌氧甲烷氧化菌(“厌氧甲烷氧化菌属”和“嗜甲基菌属”)的不同组合,它们在其中的碳和氮转化中起主要作用。尽管甲烷是唯一供应的外源有机碳,但异养菌群(如疣微菌门和拟杆菌门)共存并积极进行部分反硝化或异化硝酸盐还原为铵(DNRA),可能利用甲烷和生物质分解产生的有机中间体作为碳源。更重要的是,获得了两个属于“嗜甲基菌属”的新基因组,其中一个令人惊讶地表达了硝酸盐还原酶,我们将其命名为“嗜甲基菌属硝酸盐还原菌”,这代表了其在进行硝酸盐依赖型厌氧甲烷氧化方面的推断能力。这一发现不仅表明“嗜甲基菌属”细菌在进行甲烷依赖型硝酸盐还原方面存在先前被忽视的可能性,也挑战了先前认为从硝酸盐到氮气的甲烷依赖型完全反硝化是由细菌和古菌联合体进行的观点。