Suppr超能文献

原位洞察“水合盐”电解质基水系锌电池中的界面动力学。

In Situ Insight into the Interfacial Dynamics in "Water-in-Salt" Electrolyte-Based Aqueous Zinc Batteries.

机构信息

Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China.

University of Chinese Academy of Sciences, 100190, Beijing, P. R. China.

出版信息

Small Methods. 2023 Jun;7(6):e2300392. doi: 10.1002/smtd.202300392. Epub 2023 Apr 25.

Abstract

Water-in-salt (WIS) electrolyte is considered as one of most promising systems for aqueous zinc batteries (AZBs) due to its dendrite-free plating/stripping with nearly 100% Coulombic efficiency. However, the understanding of the interfacial mechanisms remains elusive, which is crucial for further improvements in battery performance. Herein, the interfacial processes of solid electrolyte interphase (SEI) formation and subsequent Zn plating/stripping are monitored by in situ atomic force microscopy and in situ optical microscopy. The live formation of uniform and compact LiF-rich SEI in WIS systems could induce the uniform hexagonal Zn deposition with preferential orientation growth in the (002) crystal plane, showing excellent plating/stripping reversibility. In contrast, the SEI formed in 1 m zinc bis(trifluoromethylsulfonyl)imide (Zn(TFSI) ) is uneven and rich in inert ZnO, adversely triggering the dendrite propagation and successive "dead" Zn accumulation in repeated deposition/dissolution cycles. This work provides an in-depth understanding of the relationship between SEI evolution and Zn-deposited behaviors in AZBs, possibly stimulating more research on rational composition design and structural optimization of solid/liquid interface for advanced rechargeable aqueous multivalent-ion batteries.

摘要

水系锌电池(AZBs)因具有无枝晶电镀/剥离和近 100%库仑效率而被认为是最有前途的水系锌电池体系之一。然而,界面机制的理解仍然难以捉摸,这对于进一步提高电池性能至关重要。在此,通过原位原子力显微镜和原位光学显微镜监测了固体电解质界面(SEI)形成和随后的 Zn 电镀/剥离的界面过程。在 WIS 体系中,均匀致密的富 LiF 的 SEI 的原位形成可以诱导具有(002)晶面择优取向生长的均匀六方 Zn 沉积,表现出优异的电镀/剥离可逆性。相比之下,在 1 m 锌双(三氟甲基磺酰基)亚胺(Zn(TFSI))中形成的 SEI 不均匀且富含惰性 ZnO,不利地触发了枝晶的生长和在反复沉积/溶解循环中连续的“死”Zn 的积累。这项工作深入了解了 SEI 演变与 AZBs 中 Zn 沉积行为之间的关系,可能会激发更多关于先进可充电多价离子电池的固/液界面的合理组成设计和结构优化的研究。

相似文献

1
In Situ Insight into the Interfacial Dynamics in "Water-in-Salt" Electrolyte-Based Aqueous Zinc Batteries.
Small Methods. 2023 Jun;7(6):e2300392. doi: 10.1002/smtd.202300392. Epub 2023 Apr 25.
2
Electrolyte Strategies Facilitating Anion-Derived Solid-Electrolyte Interphases for Aqueous Zinc-Metal Batteries.
Small Methods. 2024 Jun;8(6):e2300554. doi: 10.1002/smtd.202300554. Epub 2023 Jul 8.
3
Fluorinated interphase enables reversible aqueous zinc battery chemistries.
Nat Nanotechnol. 2021 Aug;16(8):902-910. doi: 10.1038/s41565-021-00905-4. Epub 2021 May 10.
4
Stabilizing Interface pH by Mixing Electrolytes for High-Performance Aqueous Zn Metal Batteries.
Small. 2022 Dec;18(51):e2205462. doi: 10.1002/smll.202205462. Epub 2022 Nov 4.
5
Nanoscale Visualization of Lithium Plating/Stripping Tuned by On-site Formed Solid Electrolyte Interphase in All-Solid-State Lithium-Metal Batteries.
Angew Chem Int Ed Engl. 2024 Mar 22;63(13):e202316837. doi: 10.1002/anie.202316837. Epub 2024 Feb 20.
6
Probing of Mass Exchange at the Solid Electrolyte Interphase in Aqueous and Nonaqueous Zn Electrolytes with EQCM-D.
ACS Appl Mater Interfaces. 2021 Mar 3;13(8):10131-10140. doi: 10.1021/acsami.1c00565. Epub 2021 Feb 17.
7
Evolution of the Dynamic Solid Electrolyte Interphase in Mg Electrolytes for Rechargeable Mg-Ion Batteries.
ACS Appl Mater Interfaces. 2022 Oct 19;14(41):46635-46645. doi: 10.1021/acsami.2c13037. Epub 2022 Oct 7.
8
Rational Design of an In-Situ Polymer-Inorganic Hybrid Solid Electrolyte Interphase for Realising Stable Zn Metal Anode under Harsh Conditions.
Angew Chem Int Ed Engl. 2024 May 21;63(21):e202401987. doi: 10.1002/anie.202401987. Epub 2024 Apr 18.
9
Highly Concentrated Salt Electrolyte for a Highly Stable Aqueous Dual-Ion Zinc Battery.
ACS Appl Mater Interfaces. 2022 Aug 17;14(32):36644-36655. doi: 10.1021/acsami.2c09040. Epub 2022 Aug 4.

引用本文的文献

1
Selective facet etching enables dendrite-less molten salt aluminum metal batteries.
Natl Sci Rev. 2025 Jun 3;12(7):nwaf233. doi: 10.1093/nsr/nwaf233. eCollection 2025 Jul.
2
Advanced electrode design enables homogeneous electric field distribution for metal deposition studies via  liquid cell TEM.
iScience. 2024 Oct 9;27(11):111119. doi: 10.1016/j.isci.2024.111119. eCollection 2024 Nov 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验