Wei Xin, Noyong Michael, Simon Ulrich
Institute of Inorganic Chemistry (IAC), RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany.
iScience. 2024 Oct 9;27(11):111119. doi: 10.1016/j.isci.2024.111119. eCollection 2024 Nov 15.
liquid-phase electrochemical transmission electron microscopy (ec-TEM) as a valuable technique has been widely used in studying metal deposition in battery materials. While real-time observations of metallic nucleation, growth, and dendrite formation using microscale ec-TEM liquid cells are investigated, existing cells exhibit nonuniform electric field distribution along electrodes, limiting measurement reliability and quantitative analysis. Here, we introduce an advanced electrode design for ec-TEM chips, ensuring a uniform electric field for precise characterization of early-stage metal deposition closer to practical battery conditions. Both simulation and experimental investigations demonstrate that these specially designed ec-TEM chips facilitate quantitative electrochemical characterization combined with the TEM technique in comparison with commercially available chips. We thus provide a significant progression toward optimizing the performance and reliability of quantitative liquid-phase TEM measurements, essential for understanding and improving electrochemical systems.
液相电化学透射电子显微镜(ec-TEM)作为一种有价值的技术,已被广泛应用于研究电池材料中的金属沉积。虽然人们利用微尺度ec-TEM液体池对金属成核、生长和枝晶形成进行实时观察,但现有的液体池沿电极存在不均匀的电场分布,限制了测量的可靠性和定量分析。在此,我们介绍一种用于ec-TEM芯片的先进电极设计,确保电场均匀,以便在更接近实际电池条件下精确表征早期金属沉积。模拟和实验研究均表明,与市售芯片相比,这些经过特殊设计的ec-TEM芯片有助于结合TEM技术进行定量电化学表征。因此,我们在优化定量液相TEM测量的性能和可靠性方面取得了重大进展,这对于理解和改进电化学系统至关重要。