文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用复合激发精细结构等离子体光谱梳和功能化二维 TaC-MXene 的 Au 纳米阵列进行超灵敏和特异性的致病核酸检测。

Ultra-sensitive and specific detection of pathogenic nucleic acids using composite-excited hyperfine plasma spectroscopy combs sensitized by Au nanoarrays functionalized with 2D TaC-MXene.

机构信息

School of Control Science and Engineering, Shandong University, Jingshi Road, 250061, Jinan, China.

The Second Hospital of Shandong University, No. 247 Beiyuan Street, Jinan, 250033, Shandong Province, China.

出版信息

Biosens Bioelectron. 2023 Sep 1;235:115358. doi: 10.1016/j.bios.2023.115358. Epub 2023 May 4.


DOI:10.1016/j.bios.2023.115358
PMID:37187059
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10158268/
Abstract

Accurate and rapid screening techniques on a population scale are crucial for preventing and managing epidemics like COVID-19. The standard gold test for nucleic acids in pathogenic infections is primarily the reverse transcription polymerase chain reaction (RT-PCR). However, this method is not suitable for widespread screening due to its reliance on large-scale equipment and time-consuming extraction and amplification processes. Here, we developed a collaborative system that combines high-load hybridization probes targeting N and OFR1a with Au NPs@TaC-M modified gold-coated tilted fiber Bragg grating (TFBG) sensors to enable direct nucleic acid detection. Multiple activation sites of SARS-CoV-2 were saturable modified on the surface of a homogeneous arrayed AuNPs@TaC-M/Au structure based on a segmental modification approach. The combination of hybrid probe synergy and composite polarisation response in the excitation structure results in highly specific hybridization analysis and excellent signal transduction of trace target sequences. The system demonstrates excellent trace specificity, with a limit of detection of 0.2 pg/mL, and achieves a rapid response time of 1.5 min for clinical samples without amplification. The results showed high agreement with the RT-PCR test (Kappa index = 1). And the gradient-based detection of 10-in-1 mixed samples exhibits high-intensity interference immunity and excellent trace identification. Therefore, the proposed synergistic detection platform has a good tendency to curb the global spread of epidemics such as COVID-19.

摘要

在人群中进行准确和快速的筛选技术对于预防和管理 COVID-19 等传染病至关重要。病原性感染中核酸的标准金测试主要是逆转录聚合酶链反应(RT-PCR)。然而,由于该方法依赖于大规模设备和耗时的提取和扩增过程,因此不适合广泛筛选。在这里,我们开发了一种协同系统,该系统结合了针对 N 和 OFR1a 的高负载杂交探针与 Au NPs@TaC-M 修饰的金涂倾斜光纤布拉格光栅(TFBG)传感器,可实现直接核酸检测。基于分段修饰方法,在均相排列的 AuNPs@TaC-M/Au 结构表面上可饱和修饰多个 SARS-CoV-2 激活位点。杂交探针协同作用和激发结构中的复合偏振响应的组合导致对痕量目标序列进行高度特异性的杂交分析和出色的信号转导。该系统表现出优异的痕量特异性,检测限为 0.2 pg/mL,并且在没有扩增的情况下,对临床样本的快速响应时间为 1.5 分钟。结果与 RT-PCR 测试高度一致(Kappa 指数= 1)。并且对 10-in-1 混合样品的基于梯度的检测表现出高强度干扰免疫和出色的痕量识别。因此,所提出的协同检测平台具有很好的抑制 COVID-19 等传染病在全球传播的趋势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57ba/10158268/d33b8680684b/gr5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57ba/10158268/9d5be5c3acaa/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57ba/10158268/941d5ccbc1b1/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57ba/10158268/1b27ebc62291/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57ba/10158268/58d0f0f50244/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57ba/10158268/d33b8680684b/gr5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57ba/10158268/9d5be5c3acaa/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57ba/10158268/941d5ccbc1b1/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57ba/10158268/1b27ebc62291/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57ba/10158268/58d0f0f50244/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57ba/10158268/d33b8680684b/gr5_lrg.jpg

相似文献

[1]
Ultra-sensitive and specific detection of pathogenic nucleic acids using composite-excited hyperfine plasma spectroscopy combs sensitized by Au nanoarrays functionalized with 2D TaC-MXene.

Biosens Bioelectron. 2023-9-1

[2]
Ultra-sensitive specific detection of nucleic acids in pathogenic infections by TaC-MXene sensitization-based ultrafine plasmon spectroscopy combs.

Sens Actuators B Chem. 2023-7-15

[3]
Rapid ultra-sensitive nucleic acid detection using plasmonic fiber-optic spectral combs and gold nanoparticle-tagged targets.

Biosens Bioelectron. 2023-12-15

[4]
Plasmonic optical fiber gratings based on few-layer TaC MXenes for refractive index sensing.

Nanotechnology. 2022-12-16

[5]
Sensitivity-improved SERS detection of SARS-CoV-2 spike protein by Au NPs/COFs integrated with catalytic-hairpin-assembly amplification technology.

Anal Chim Acta. 2024-8-22

[6]
Nanozyme-strip for rapid and ultrasensitive nucleic acid detection of SARS-CoV-2.

Biosens Bioelectron. 2022-12-1

[7]
Rapid SARS-CoV-2 sensing through oxygen reduction reaction catalysed by Au@Pt/Au core@shell nanoparticles.

Talanta. 2024-12-1

[8]
Reverse Transcription Recombinase Polymerase Amplification Coupled with CRISPR-Cas12a for Facile and Highly Sensitive Colorimetric SARS-CoV-2 Detection.

Anal Chem. 2021-3-2

[9]
Electrochemical biosensor for detection of MON89788 gene fragments with spiny trisoctahedron gold nanocrystal and target DNA recycling amplification.

Mikrochim Acta. 2020-8-10

[10]
Multisite Clinical Validation of Isothermal Amplification-Based SARS-CoV-2 Detection Assays Using Different Sampling Strategies.

Microbiol Spectr. 2021-10-31

引用本文的文献

[1]
Nanotechnology-based theranostic and prophylactic approaches against SARS-CoV-2.

Immunol Res. 2024-2

[2]
Two-Dimensional (2D) materials in the detection of SARS-CoV-2.

Microchem J. 2023-10

本文引用的文献

[1]
Understanding the Excitation Wavelength Dependence and Thermal Stability of the SARS-CoV-2 Receptor-Binding Domain Using Surface-Enhanced Raman Scattering and Machine Learning.

ACS Photonics. 2022-8-25

[2]
Electro-plasmonic-assisted biosensing of proteins and cells at the surface of optical fiber.

Biosens Bioelectron. 2023-1-15

[3]
Acute and postacute sequelae associated with SARS-CoV-2 reinfection.

Nat Med. 2022-11

[4]
Hierarchical Au nanoarrays functionalized 2D TiCT MXene membranes for the detection of exosomes isolated from human lung carcinoma cells.

Biosens Bioelectron. 2022-11-15

[5]
A blueprint for eliminating cholera by 2030.

Nat Med. 2022-9

[6]
Programmable dual-electric-field immunosensor using MXene-Au-based competitive signal probe for natural parathion-methyl detection.

Biosens Bioelectron. 2022-10-15

[7]
Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5.

Nature. 2022-8

[8]
Antigenic cartography of SARS-CoV-2 reveals that Omicron BA.1 and BA.2 are antigenically distinct.

Sci Immunol. 2022-9-23

[9]
Advances in Nanomaterial-Based Platforms to Combat COVID-19: Diagnostics, Preventions, Therapeutics, and Vaccine Developments.

ACS Appl Bio Mater. 2022-6-20

[10]
Triple-Probe DNA Framework-Based Transistor for SARS-CoV-2 10-in-1 Pooled Testing.

Nano Lett. 2022-4-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索