文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纳米酶条用于 SARS-CoV-2 的快速和超灵敏核酸检测。

Nanozyme-strip for rapid and ultrasensitive nucleic acid detection of SARS-CoV-2.

机构信息

CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academic of Science, Beijing, 100101, China.

CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academic of Science, Beijing, 100101, China; School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China.

出版信息

Biosens Bioelectron. 2022 Dec 1;217:114739. doi: 10.1016/j.bios.2022.114739. Epub 2022 Sep 19.


DOI:10.1016/j.bios.2022.114739
PMID:36155953
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9484135/
Abstract

The coronavirus disease 2019 (COVID-19) pandemic has created a huge demand for sensitive and rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The current gold standard for SARS-CoV-2 detection is reverse transcription-polymerase chain reaction (RT-PCR)-based nucleic acid amplification. However, RT-PCR is time consuming and requires specialists and large instruments that are unattainable for point-of-care testing (POCT). To develop POCT for SARS-CoV-2, we combined recombinase polymerase amplification (RPA) and FeS nanozyme strips to achieve facile nucleic acid amplification and subsequent colorimetric signal enhancement based on the high peroxidase-like activity of the FeS nanozymes. This method showed a nucleic acid limit of detection (LOD) for SARS-CoV-2 of 200 copies/mL, close to that of RT-PCR. The unique catalytic properties of the FeS nanozymes enabled the nanozyme-strip to amplify colorimetric signals via the nontoxic 3,3',5,5'-tetramethylbenzidine (TMB) substrate. Importantly, the detection of clinical samples of human papilloma virus type 16 (HPV-16) showed 100% agreement with previous RT-PCR results, highlighting the versatility and reliability of this method. Our findings suggest that nanozyme-based nucleic acid detection has great potential in the development of POCT diagnosis for COVID-19 and other viral infections.

摘要

2019 年冠状病毒病(COVID-19)大流行对严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)的敏感和快速检测提出了巨大需求。目前 SARS-CoV-2 检测的金标准是基于逆转录-聚合酶链反应(RT-PCR)的核酸扩增。然而,RT-PCR 耗时且需要专家和大型仪器,而这些在即时检测(POCT)中是无法实现的。为了开发 SARS-CoV-2 的 POCT,我们将重组酶聚合扩增(RPA)和 FeS 纳米酶片结合在一起,实现了简便的核酸扩增,随后基于 FeS 纳米酶的高过氧化物酶样活性进行了比色信号增强。该方法对 SARS-CoV-2 的核酸检测限(LOD)为 200 拷贝/mL,接近 RT-PCR 的水平。FeS 纳米酶的独特催化特性使纳米酶片能够通过非毒性 3,3',5,5'-四甲基联苯胺(TMB)底物扩增比色信号。重要的是,对人乳头瘤病毒 16 型(HPV-16)临床样本的检测与之前的 RT-PCR 结果完全一致,突出了该方法的多功能性和可靠性。我们的研究结果表明,基于纳米酶的核酸检测在 COVID-19 和其他病毒感染的 POCT 诊断开发方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/499f/9484135/832c2434d782/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/499f/9484135/07a6001d3337/sc1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/499f/9484135/164f27819b05/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/499f/9484135/562da0dd0bb2/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/499f/9484135/7c9c841f4400/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/499f/9484135/832c2434d782/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/499f/9484135/07a6001d3337/sc1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/499f/9484135/164f27819b05/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/499f/9484135/562da0dd0bb2/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/499f/9484135/7c9c841f4400/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/499f/9484135/832c2434d782/gr4_lrg.jpg

相似文献

[1]
Nanozyme-strip for rapid and ultrasensitive nucleic acid detection of SARS-CoV-2.

Biosens Bioelectron. 2022-12-1

[2]
Development of a multi-recombinase polymerase amplification assay for rapid identification of COVID-19, influenza A and B.

J Med Virol. 2023-1

[3]
Rapid and Visual Detection of SARS-CoV-2 RNA Based on Reverse Transcription-Recombinase Polymerase Amplification with Closed Vertical Flow Visualization Strip Assay.

Microbiol Spectr. 2023-2-14

[4]
Reverse Transcription Recombinase Polymerase Amplification Coupled with CRISPR-Cas12a for Facile and Highly Sensitive Colorimetric SARS-CoV-2 Detection.

Anal Chem. 2021-3-2

[5]
Development of a reverse transcription recombinase polymerase amplification assay for rapid and direct visual detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).

PLoS One. 2021

[6]
Specific lateral flow detection of isothermal nucleic acid amplicons for accurate point-of-care testing.

Biosens Bioelectron. 2023-2-15

[7]
Isothermal recombinase polymerase amplification-lateral flow detection of SARS-CoV-2, the etiological agent of COVID-19.

J Virol Methods. 2021-10

[8]
Rapid Detection of SARS-CoV-2 RNA Using Reverse Transcription Recombinase Polymerase Amplification (RT-RPA) with Lateral Flow for N-Protein Gene and Variant-Specific Deletion-Insertion Mutation in S-Protein Gene.

Viruses. 2023-5-26

[9]
Reverse Transcription Recombinase-Aided Amplification Assay With Lateral Flow Dipstick Assay for Rapid Detection of 2019 Novel Coronavirus.

Front Cell Infect Microbiol. 2021

[10]
A reverse-transcription recombinase-aided amplification assay for the rapid detection of N gene of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).

Virology. 2020-7-29

引用本文的文献

[1]
Advances of Nanozyme-Driven Multimodal Sensing Strategies in Point-of-Care Testing.

Biosensors (Basel). 2025-6-10

[2]
Performance of the Flash10 COVID-19 point-of-care molecular test.

Sci Rep. 2024-10-27

[3]
Molecularly Imprinted Viral Protein Integrated Zn-Cu-In-Se-P Quantum Dots Superlattice for Quantitative Ratiometric Electrochemical Detection of SARS-CoV-2 Spike Protein in Saliva.

ACS Appl Nano Mater. 2024-7-24

[4]
SARS-CoV-2 recombinase polymerase amplification assay with lateral flow readout and duplexed full process internal control.

Sens Diagn. 2024-1-12

[5]
Ultrasmall metal alloy nanozymes mimicking neutrophil enzymatic cascades for tumor catalytic therapy.

Nat Commun. 2024-2-22

[6]
RNA barcode segments for SARS-CoV-2 identification from HCoVs and SARSr-CoV-2 lineages.

Virol Sin. 2024-2

[7]
Application of the Peroxidase‒like Activity of Nanomaterials for the Detection of Pathogenic Bacteria and Viruses.

Int J Nanomedicine. 2024

[8]
Utilizing nanozymes for combating COVID-19: advancements in diagnostics, treatments, and preventative measures.

J Nanobiotechnology. 2023-6-21

[9]
An In Situ Study on Nanozyme Performance to Optimize Nanozyme-Strip for Aβ Detection.

Sensors (Basel). 2023-3-24

[10]
Recent advances in recombinase polymerase amplification: Principle, advantages, disadvantages and applications.

Front Cell Infect Microbiol. 2022

本文引用的文献

[1]
Antibody evasion properties of SARS-CoV-2 Omicron sublineages.

Nature. 2022-4

[2]
CLIPON: A CRISPR-Enabled Strategy that Turns Commercial Pregnancy Test Strips into General Point-of-Need Test Devices.

Angew Chem Int Ed Engl. 2022-3-14

[3]
Rapid point-of-care testing for SARS-CoV-2 virus nucleic acid detection by an isothermal and nonenzymatic Signal amplification system coupled with a lateral flow immunoassay strip.

Sens Actuators B Chem. 2021-9-1

[4]
High-Performance Self-Cascade Pyrite Nanozymes for Apoptosis-Ferroptosis Synergistic Tumor Therapy.

ACS Nano. 2021-3-23

[5]
Nanozyme chemiluminescence paper test for rapid and sensitive detection of SARS-CoV-2 antigen.

Biosens Bioelectron. 2021-2-1

[6]
Detection of SARS-CoV-2 with SHERLOCK One-Pot Testing.

N Engl J Med. 2020-10-8

[7]
Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA.

Nat Biomed Eng. 2020-8-26

[8]
The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity.

Cell. 2020-7-17

[9]
Fighting COVID-19: A quick review of diagnoses, therapies, and vaccines.

Biomed J. 2020-5-30

[10]
CRISPR-Cas12-based detection of SARS-CoV-2.

Nat Biotechnol. 2020-4-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索