Suppr超能文献

利用表面增强拉曼散射和机器学习理解新冠病毒受体结合域的激发波长依赖性和热稳定性

Understanding the Excitation Wavelength Dependence and Thermal Stability of the SARS-CoV-2 Receptor-Binding Domain Using Surface-Enhanced Raman Scattering and Machine Learning.

作者信息

Zhang Kunyan, Wang Ziyang, Liu He, Perea-López Néstor, Ranasinghe Jeewan C, Bepete George, Minns Allen M, Rossi Randall M, Lindner Scott E, Huang Sharon X, Terrones Mauricio, Huang Shengxi

机构信息

Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania16802, United States.

Department of Electrical and Computer Engineering, Rice University, Houston, Texas77005, United States.

出版信息

ACS Photonics. 2022 Aug 25;9(9):2963-2972. doi: 10.1021/acsphotonics.2c00456. eCollection 2022 Sep 21.

Abstract

COVID-19 has cost millions of lives worldwide. The constant mutation of SARS-CoV-2 calls for thorough research to facilitate the development of variant surveillance. In this work, we studied the fundamental properties related to the optical identification of the receptor-binding domain (RBD) of SARS-CoV-2 spike protein, a key component of viral infection. The Raman modes of the SARS-CoV-2 RBD were captured by surface-enhanced Raman spectroscopy (SERS) using gold nanoparticles (AuNPs). The observed Raman enhancement strongly depends on the excitation wavelength as a result of the aggregation of AuNPs. The characteristic Raman spectra of RBDs from SARS-CoV-2 and MERS-CoV were analyzed by principal component analysis that reveals the role of secondary structures in the SERS process, which is corroborated with the thermal stability under laser heating. We can easily distinguish the Raman spectra of two RBDs using machine learning algorithms with accuracy, precision, recall, and scores all over 95%. Our work provides an in-depth understanding of the SARS-CoV-2 RBD and paves the way toward rapid analysis and discrimination of complex proteins of infectious viruses and other biomolecules.

摘要

新冠病毒已在全球夺走数百万人的生命。严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的不断变异需要进行深入研究,以促进变异株监测的发展。在这项工作中,我们研究了与SARS-CoV-2刺突蛋白受体结合域(RBD)光学识别相关的基本特性,该蛋白是病毒感染的关键组成部分。利用金纳米颗粒(AuNPs)通过表面增强拉曼光谱(SERS)捕获了SARS-CoV-2 RBD的拉曼模式。由于AuNPs的聚集,观察到的拉曼增强强烈依赖于激发波长。通过主成分分析对来自SARS-CoV-2和中东呼吸综合征冠状病毒(MERS-CoV)的RBD的特征拉曼光谱进行了分析,揭示了二级结构在SERS过程中的作用,这与激光加热下的热稳定性得到了证实。我们可以使用机器学习算法轻松地区分两种RBD的拉曼光谱,准确率、精确率、召回率和F1分数均超过95%。我们的工作为深入了解SARS-CoV-2 RBD提供了依据,并为快速分析和鉴别传染性病毒的复杂蛋白质及其他生物分子铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验