Coutinho Flaviane Silva, Mesquita Rosilene Oliveira, Rodrigues Juliano Mendonça, Zanotti Analú, Faustino Verônica Aparecida, Barros Edvaldo, Vital Camilo Elber, de Almeida Oliveira Maria Goreti, Meira Renata Maria Strozi Alves, Williams Thomas Christopher Rhys, Fontes Elizabeth Pacheco Batista, Loureiro Marcelo Ehlers, de Oliveira Ramos Humberto Josué
Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil.
Departamento de Fitotecnia, Universidade Federal do Ceará, Fortaleza, Ceará Brazil.
Physiol Mol Biol Plants. 2023 Apr;29(4):559-577. doi: 10.1007/s12298-023-01307-7. Epub 2023 Apr 19.
Climate change increases precipitation variability, particularly in savanna environments. We have used integrative strategies to understand the molecular mechanisms of drought tolerance, which will be crucial for developing improved genotypes. The current study compares the molecular and physiological parameters between the drought-tolerant Embrapa 48 and the sensitive BR16 genotypes. We integrated the root-shoot system's transcriptome, proteome, and metabolome to understand drought tolerance. The results indicated that Embrapa 48 had a greater capacity for water absorption due to alterations in length and volume. Drought tolerance appears to be ABA-independent, and IAA levels in the leaves partially explain the higher root growth. Proteomic profiles revealed up-regulated proteins involved in glutamine biosynthesis and proteolysis, suggesting osmoprotection and explaining the larger root volume. Dysregulated proteins in the roots belong to the phenylpropanoid pathways. Additionally, PR-like proteins involved in the biosynthesis of phenolics may act to prevent oxidative stress and as a substrate for modifying cell walls. Thus, we concluded that alterations in the root-shoot conductive vessel system are critical in promoting drought tolerance. Moreover, photosynthetic parameters from reciprocal grafting experiments indicated that the root system is more essential than the shoots in the drought tolerance mechanism. Finally, we provided a comprehensive overview of the genetic, molecular, and physiological traits involved in drought tolerance mechanisms.
The online version contains supplementary material available at 10.1007/s12298-023-01307-7.
气候变化增加了降水变率,特别是在稀树草原环境中。我们采用了综合策略来了解耐旱性的分子机制,这对于培育改良基因型至关重要。当前研究比较了耐旱的Embrapa 48和敏感的BR16基因型之间的分子和生理参数。我们整合了根-茎系统的转录组、蛋白质组和代谢组以了解耐旱性。结果表明,Embrapa 48由于长度和体积的改变而具有更强的吸水能力。耐旱性似乎不依赖脱落酸,叶片中的生长素水平部分解释了更高的根系生长。蛋白质组学分析揭示了参与谷氨酰胺生物合成和蛋白水解的上调蛋白,表明存在渗透保护作用,并解释了更大的根体积。根中失调的蛋白质属于苯丙烷类途径。此外,参与酚类生物合成的类病程相关蛋白可能起到预防氧化应激的作用,并作为修饰细胞壁的底物。因此,我们得出结论,根-茎传导系统的改变对于提高耐旱性至关重要。此外,互作嫁接实验的光合参数表明,在耐旱机制中根系比地上部分更重要。最后,我们全面概述了耐旱机制中涉及的遗传、分子和生理特性。
在线版本包含可在10.1007/s12298-023-01307-7获取的补充材料。