Coutinho Flaviane Silva, Rodrigues Juliano Mendonça, Lima Lucas Leal, Mesquita Rosilene Oliveira, Carpinetti Paola Avelar, Machado João Paulo Batista, Vital Camilo Elber, Vidigal Pedro Marcus, Ramos Maria Eduarda Soares, Maximiano Mariana Rocha, Mehta Angela, Oliveira Maria Goreti Almeida, Fontes Elizabeth Pacheco Batista, de Oliveira Ramos Humberto Josué
Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil.
Departamento de Fitotecnia, Universidade Federal do Ceará, Fortaleza, Ceará Brazil.
aBIOTECH. 2021 Apr 5;2(1):14-31. doi: 10.1007/s42994-021-00043-4. eCollection 2021 Mar.
Drought stress is major abiotic stress that affects soybean production. Therefore, it is widely desirable that soybean becomes more tolerant to stress. To provide insights into regulatory mechanisms of the stress response, we compared the global gene expression profiles from leaves of two soybean genotypes that display different responses to water-deficit (BR 16 and Embrapa 48, drought-sensitive and drought-tolerant, respectively). After the RNA-seq analysis, a total of 5335 down-regulated and 3170 up-regulated genes were identified in the BR16. On the other hand, the number of genes differentially expressed was markedly lower in the Embrapa 48, 355 up-regulated and 471 down-regulated genes. However, induction and expression of protein kinases and transcription factors indicated signaling cascades involved in the drought tolerance. Overall, the results suggest that the metabolism of pectin is differently modulated in response to drought stress and may play a role in the soybean defense mechanism against drought. This occurs via an increase of the cell wall plasticity and crosslink, which contributed to a higher hydraulic conductance ( ) and relative water content (RWC%). The drought-tolerance mechanism of the Embrapa 48 genotype involves remodeling of the cell wall and increase of the hydraulic conductance to the maintenance of cell turgor and metabolic processes, resulting in the highest leaf RWC, photosynthetic rate (), transpiration () and carboxylation (/ ). Thus, we concluded that the cell wall adjustment under drought is important for a more efficient water use which promoted a more active photosynthetic metabolism, maintaining higher plant growth under drought stress.
The online version contains supplementary material available at 10.1007/s42994-021-00043-4.
干旱胁迫是影响大豆产量的主要非生物胁迫。因此,人们普遍期望大豆能更耐受胁迫。为深入了解胁迫响应的调控机制,我们比较了两种对水分亏缺表现出不同反应的大豆基因型(分别为干旱敏感型的BR 16和耐旱型的Embrapa 48)叶片的全基因组表达谱。经过RNA测序分析,在BR16中总共鉴定出5335个下调基因和3170个上调基因。另一方面,Embrapa 48中差异表达的基因数量明显较少,有355个上调基因和471个下调基因。然而,蛋白激酶和转录因子的诱导与表达表明存在参与耐旱性的信号级联反应。总体而言,结果表明果胶代谢在干旱胁迫下受到不同调节,可能在大豆抗旱防御机制中发挥作用。这是通过增加细胞壁可塑性和交联来实现的,这有助于提高水力导度( )和相对含水量(RWC%)。Embrapa 48基因型的耐旱机制涉及细胞壁重塑和水力导度增加,以维持细胞膨压和代谢过程,从而导致叶片RWC、光合速率( )、蒸腾速率( )和羧化效率( / )最高。因此,我们得出结论,干旱条件下的细胞壁调节对于更高效地利用水分很重要,这促进了更活跃的光合代谢,在干旱胁迫下维持较高的植物生长。
在线版本包含可在10.1007/s42994-021-00043-4获取的补充材料。