Suppr超能文献

相似文献

1
Remodeling of the cell wall as a drought-tolerance mechanism of a soybean genotype revealed by global gene expression analysis.
aBIOTECH. 2021 Apr 5;2(1):14-31. doi: 10.1007/s42994-021-00043-4. eCollection 2021 Mar.
3
Differential gene expression in response to water deficit in leaf and root tissues of soybean genotypes with contrasting tolerance profiles.
Genet Mol Biol. 2020 May 29;43(2):e20180290. doi: 10.1590/1678-4685-GMB-2018-0290. eCollection 2020.
4
Alterations in the root phenylpropanoid pathway and root-shoot vessel system as main determinants of the drought tolerance of a soybean genotype.
Physiol Mol Biol Plants. 2023 Apr;29(4):559-577. doi: 10.1007/s12298-023-01307-7. Epub 2023 Apr 19.
6
Physiological approach to decipher the drought tolerance of a soybean genotype from Brazilian savana.
Plant Physiol Biochem. 2020 Jun;151:132-143. doi: 10.1016/j.plaphy.2020.03.004. Epub 2020 Mar 13.
7
Understanding abiotic stress tolerance mechanisms in soybean: a comparative evaluation of soybean response to drought and flooding stress.
Plant Physiol Biochem. 2015 Jan;86:109-120. doi: 10.1016/j.plaphy.2014.11.010. Epub 2014 Nov 20.

引用本文的文献

1
Advanced imaging-enabled understanding of cell wall remodeling mechanisms mediating plant drought stress tolerance.
Front Plant Sci. 2025 Aug 8;16:1635078. doi: 10.3389/fpls.2025.1635078. eCollection 2025.
2
The GCN4-Swi6B module mediates low nitrogen-induced cell wall remodeling in .
Appl Environ Microbiol. 2025 Apr 23;91(4):e0016425. doi: 10.1128/aem.00164-25. Epub 2025 Mar 27.
3
Drought Response in the Transcriptome and Ionome of Wild and Domesticated L. Sweet, an Underutilized Legume.
Plant Environ Interact. 2025 Jan 19;6(1):e70027. doi: 10.1002/pei3.70027. eCollection 2025 Feb.
4
Transcriptomic Profile of Tef () in Response to Drought.
Plants (Basel). 2024 Nov 2;13(21):3086. doi: 10.3390/plants13213086.
6
Alterations in the root phenylpropanoid pathway and root-shoot vessel system as main determinants of the drought tolerance of a soybean genotype.
Physiol Mol Biol Plants. 2023 Apr;29(4):559-577. doi: 10.1007/s12298-023-01307-7. Epub 2023 Apr 19.
9
Physiological and Multi-Omics Approaches for Explaining Drought Stress Tolerance and Supporting Sustainable Production of Rice.
Front Plant Sci. 2022 Jan 27;12:803603. doi: 10.3389/fpls.2021.803603. eCollection 2021.

本文引用的文献

1
Physiological approach to decipher the drought tolerance of a soybean genotype from Brazilian savana.
Plant Physiol Biochem. 2020 Jun;151:132-143. doi: 10.1016/j.plaphy.2020.03.004. Epub 2020 Mar 13.
3
Improvement of Drought Tolerance in Rice ( L.): Genetics, Genomic Tools, and the WRKY Gene Family.
Biomed Res Int. 2018 Aug 7;2018:3158474. doi: 10.1155/2018/3158474. eCollection 2018.
4
Current Models for Transcriptional Regulation of Secondary Cell Wall Biosynthesis in Grasses.
Front Plant Sci. 2018 Apr 4;9:399. doi: 10.3389/fpls.2018.00399. eCollection 2018.
7
Transcriptional profiling of mechanically and genetically sink-limited soybeans.
Plant Cell Environ. 2017 Oct;40(10):2307-2318. doi: 10.1111/pce.13030. Epub 2017 Aug 24.
8
Genome-wide transcriptomic comparison of cotton (Gossypium herbaceum) leaf and root under drought stress.
3 Biotech. 2015 Aug;5(4):585-596. doi: 10.1007/s13205-014-0257-2. Epub 2014 Oct 19.
9
Transcription Factors and Plants Response to Drought Stress: Current Understanding and Future Directions.
Front Plant Sci. 2016 Jul 14;7:1029. doi: 10.3389/fpls.2016.01029. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验