Suppr超能文献

十二烷基硫酸钠对产电细菌菌株细胞在碳布上吸附的影响。

Effect of Sodium Lauryl Sulfate on Sorption of Cells of the Electrogenic Bacterium Strain on Carbon Cloth.

作者信息

Stom D I, Saksonov M N, Gavlik E I, Zhdanova G O, Sasim S A, Kazarinova T Ph, Tolstoy M Yu, Gescher J

机构信息

Irkutsk State University, 1, Karl Marx, Irkutsk, Russia 664003.

Irkutsk National Research Technical University, 83, Lermontov, Irkutsk, Russia 664074.

出版信息

Indian J Microbiol. 2023 Mar;63(1):50-55. doi: 10.1007/s12088-023-01058-9. Epub 2023 Jan 25.

Abstract

Results of a study into the effect of anionic surfactant sodium lauryl sulfate on the sorption of cells of the electrogenic bacteria strain 1-I on the surface of carbon cloth used as electrodes in microbial fuel cell (MFC) technology are presented. Investigations using spectrophotometry, microscopy and microbiology revealed an increase in the degree of sorption of microbial cells on carbon cloth under the action of sodium lauryl sulfate at concentrations of 10 and 100 mg/l. The sorption of cells did not significantly differ from the control at a surfactant content of 200, 400 and 800 mg/l. It had no negative effect on bacterial growth in the concentration range from 10 to 800 mg/l. Due to the fairly high resistance of the electrogenic strain 1-I to sodium lauryl sulfate, a widespread component of wastewater, it may be considered as a prospective bioagent for the treatment of domestic wastewater using MFC technology.

摘要

本文介绍了一项关于阴离子表面活性剂月桂醇硫酸酯钠对产电细菌菌株1-I的细胞在微生物燃料电池(MFC)技术中用作电极的碳布表面吸附作用影响的研究结果。使用分光光度法、显微镜检查和微生物学进行的研究表明,在浓度为10和100mg/l的月桂醇硫酸酯钠作用下,微生物细胞在碳布上的吸附程度有所增加。在表面活性剂含量为200、400和800mg/l时,细胞的吸附与对照相比无显著差异。在10至800mg/l的浓度范围内,它对细菌生长没有负面影响。由于产电菌株1-I对废水的常见成分月桂醇硫酸酯钠具有相当高的抗性,因此它可被视为使用MFC技术处理生活污水的一种有前景的生物制剂。

相似文献

1
Effect of Sodium Lauryl Sulfate on Sorption of Cells of the Electrogenic Bacterium Strain on Carbon Cloth.
Indian J Microbiol. 2023 Mar;63(1):50-55. doi: 10.1007/s12088-023-01058-9. Epub 2023 Jan 25.
2
Sodium lauryl ether sulfate (SLES) degradation by nitrate-reducing bacteria.
Appl Microbiol Biotechnol. 2017 Jun;101(12):5163-5173. doi: 10.1007/s00253-017-8212-x. Epub 2017 Mar 15.
3
4
Surfactant addition to enhance bioavailability of bilge water in single chamber microbial fuel cells (MFCs).
J Hazard Mater. 2019 Apr 15;368:732-738. doi: 10.1016/j.jhazmat.2019.02.007. Epub 2019 Feb 4.
6
High efficiency electrochemical separation of uranium(VI) from uranium-containing wastewater by microbial fuel cells with different cathodes.
Bioelectrochemistry. 2023 Jun;151:108393. doi: 10.1016/j.bioelechem.2023.108393. Epub 2023 Feb 1.
7
Comparative study of mechanisms of herpes simplex virus inactivation by sodium lauryl sulfate and n-lauroylsarcosine.
Antimicrob Agents Chemother. 2002 Sep;46(9):2933-42. doi: 10.1128/AAC.46.9.2933-2942.2002.
8
Sodium Lauryl Sulfate Stimulates the Generation of Reactive Oxygen Species through Interactions with Cell Membranes.
J Oleo Sci. 2016 Dec 1;65(12):993-1001. doi: 10.5650/jos.ess16074. Epub 2016 Nov 9.
9
Electricity generation from real industrial wastewater using a single-chamber air cathode microbial fuel cell with an activated carbon anode.
Bioprocess Biosyst Eng. 2017 Aug;40(8):1151-1161. doi: 10.1007/s00449-017-1776-0. Epub 2017 May 19.

本文引用的文献

1
Mild Alkaline Pretreatment of Rice Straw as a Feedstock in Microbial Fuel Cells for Generation of Bioelectricity.
Indian J Microbiol. 2022 Sep;62(3):447-455. doi: 10.1007/s12088-022-01022-z. Epub 2022 Apr 25.
2
Dynamic Changes in Soil Microbial Communities with Glucose Enrichment in Sediment Microbial Fuel Cells.
Indian J Microbiol. 2021 Dec;61(4):497-505. doi: 10.1007/s12088-021-00959-x. Epub 2021 Jun 27.
3
Supercapacitive biofuel cells.
Curr Opin Biotechnol. 2022 Feb;73:179-187. doi: 10.1016/j.copbio.2021.08.008. Epub 2021 Sep 1.
4
Modeling and optimization strategies towards performance enhancement of microbial fuel cells.
Bioresour Technol. 2021 Jan;320(Pt A):124256. doi: 10.1016/j.biortech.2020.124256. Epub 2020 Oct 16.
5
Effect of low-concentration rhamnolipid biosurfactant on transport in natural porous media.
Water Resour Res. 2017 Jan;53(1):361-375. doi: 10.1002/2016WR019832. Epub 2017 Jan 13.
6
Effect of low-concentration rhamnolipid on transport of Pseudomonas aeruginosa ATCC 9027 in an ideal porous medium with hydrophilic or hydrophobic surfaces.
Colloids Surf B Biointerfaces. 2016 Mar 1;139:244-8. doi: 10.1016/j.colsurfb.2015.11.024. Epub 2015 Nov 18.
7
Effect of rhamnolipids on initial attachment of bacteria on glass and octadecyltrichlorosilane-modified glass.
Colloids Surf B Biointerfaces. 2013 Mar 1;103:121-8. doi: 10.1016/j.colsurfb.2012.10.004. Epub 2012 Oct 29.
8
Enhancing transport of hydrogenophaga flava ENV735 for bioaugmentation of aquifers contaminated with methyl tert-butyl ether.
Appl Environ Microbiol. 2002 Nov;68(11):5571-9. doi: 10.1128/AEM.68.11.5571-5579.2002.
9
Influence of different chemical treatments on transport of Alcaligenes paradoxus in porous media.
Appl Environ Microbiol. 1995 May;61(5):1750-6. doi: 10.1128/aem.61.5.1750-1756.1995.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验