Suppr超能文献

当我们不应该从现有的试验网络中借用信息来规划一项新试验时。

When we shouldn't borrow information from an existing network of trials for planning a new trial.

作者信息

Ye Fangshu, Wang Chong, O'Connor Annette M

机构信息

Department of Statistics, Iowa State University, Ames, IA, United States.

Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States.

出版信息

Front Pharmacol. 2023 Apr 27;14:1157708. doi: 10.3389/fphar.2023.1157708. eCollection 2023.

Abstract

To achieve higher power or increased precision for a new trial, methods based on updating network meta-analysis (NMA) have been proposed by researchers. However, this approach could potentially lead to misinterpreted results and misstated conclusions. This work aims to investigate the potential inflation of type I error risk when a new trial is conducted only when, based on a -value of the comparison in the existing network, a "promising" difference between two treatments is noticed. We use simulations to evaluate the scenarios of interest. In particular, a new trial is to be conducted independently or depending on the results from previous NMA in various scenarios. Three analysis methods are applied to each simulation scenario: with the existing network, sequential analysis and without the existing network. For the scenario that the new trial will be conducted only when a promising finding (-value ) is indicated by the existing network, the type I error risk increased dramatically (38.5% in our example data) when analyzed with the existing network and sequential analysis. The type I error is controlled at 5% when analyzing the new trial without the existing network. If the intention is to combine a trial result with an existing network of evidence, or if it is expected that the trial will eventually be included in a network meta-analysis, then the decision that a new trial is performed should not depend on a statistically "promising" finding indicated by the existing network.

摘要

为了在新试验中获得更高的检验效能或更高的精度,研究人员提出了基于更新网络荟萃分析(NMA)的方法。然而,这种方法可能会导致结果被误解和结论被错误陈述。本研究旨在探讨当仅在基于现有网络比较的P值发现两种治疗之间存在“有前景”的差异时进行新试验时,I型错误风险的潜在膨胀情况。我们使用模拟来评估感兴趣的场景。特别是,在各种场景下独立进行新试验或根据先前NMA的结果进行新试验。对每个模拟场景应用三种分析方法:使用现有网络、序贯分析和不使用现有网络。对于仅在现有网络表明有前景的发现(P值)时才进行新试验的场景,在使用现有网络和序贯分析时,I型错误风险显著增加(在我们的示例数据中为38.5%)。在不使用现有网络分析新试验时,I型错误被控制在5%。如果打算将试验结果与现有证据网络相结合,或者预计该试验最终将纳入网络荟萃分析,那么进行新试验的决定不应依赖于现有网络表明的统计学上“有前景”的发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e21/10176253/4ca76c04f15b/fphar-14-1157708-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验