Suppr超能文献

纳米颗粒增强相变材料(NePCM)在潜热储能应用中的关键评估。

A critical assessment of nanoparticles enhanced phase change materials (NePCMs) for latent heat energy storage applications.

机构信息

Department of Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.

Emirates Nuclear Technology Center (ENTC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.

出版信息

Sci Rep. 2023 May 15;13(1):7829. doi: 10.1038/s41598-023-34907-0.

Abstract

Phase change material (PCM) laden with nanoparticles has been testified as a notable contender to increase the effectiveness of latent heat thermal energy storage (TES) units during charging and discharging modes. In this study, a numerical model is developed and implemented based on the coupling between an advanced two-phase model for the nanoparticles-enhanced PCM (NePCM) and the enthalpy-porosity formulation for the transient behavior of the phase change. Therefore, a porosity source term is added to the nanoparticles transport equation to account for the particles' frozen state in regions occupied by solid PCM. This two-phase model includes three main nanoparticles' slip mechanisms: Brownian diffusion, thermophoresis diffusion, and sedimentation. A two-dimensional model of a triplex tube heat exchanger is considered and different charging and discharging configurations are analyzed. Compared to pure PCM, results show a substantial heat transfer enhancement during the charging and discharging cycle in which a homogeneous distribution of nanoparticles is considered as the initial condition. For this case, the two-phase model predictions are superior to the ones obtained with the classical single-phase model. In the case of multi-cycle charging and discharging, a significant deterioration of the heat transfer rate is observed using the two-phase model while such assessment is senseless using the single-phase mixture model due to the physical assumptions upon which this model is formulated. The two-phase model results reveal that, for a NePCM with high nanoparticles concentration (> 1%), the melting performance during the second charging cycle is reduced by 50% compared to the first one. This performance degradation is attributed to a noteworthy non-homogeneous distribution of the nanoparticles at the beginning of the second charging cycle. The dominant nanoparticles migration mechanism, in this scenario, is the one resulting from sedimentation effects.

摘要

相变材料(PCM)负载纳米颗粒已被证明是提高潜热热能存储(TES)单元在充电和放电模式下效率的一种有前途的方法。在这项研究中,基于纳米颗粒增强 PCM(NePCM)的先进两相模型与相变瞬态行为的焓-孔隙率公式之间的耦合,开发并实现了一个数值模型。因此,在纳米颗粒输运方程中添加了一个孔隙率源项,以考虑在固体 PCM 占据的区域中颗粒的冻结状态。该两相模型包括三种主要的纳米颗粒滑移机制:布朗扩散、热泳扩散和沉降。考虑了一个三管换热器的二维模型,并分析了不同的充电和放电配置。与纯 PCM 相比,结果表明在充电和放电循环中传热得到了显著增强,其中纳米颗粒的均匀分布被视为初始条件。在这种情况下,两相模型的预测优于经典单相模型的预测。在多周期充电和放电的情况下,使用两相模型观察到传热速率的显著恶化,而使用单相混合物模型进行这种评估是没有意义的,因为该模型是基于物理假设构建的。两相模型的结果表明,对于具有高纳米颗粒浓度(>1%)的 NePCM,与第一次充电循环相比,第二次充电循环的熔化性能降低了 50%。这种性能下降归因于在第二次充电循环开始时纳米颗粒的显著非均匀分布。在这种情况下,纳米颗粒迁移的主要机制是沉降效应导致的机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff52/10185680/673e214c8894/41598_2023_34907_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验