Suppr超能文献

唾液衰减全反射傅里叶变换红外光谱结合支持向量机分类用于2型糖尿病筛查

Salivary ATR-FTIR Spectroscopy Coupled with Support Vector Machine Classification for Screening of Type 2 Diabetes Mellitus.

作者信息

Caixeta Douglas Carvalho, Carneiro Murillo Guimarães, Rodrigues Ricardo, Alves Deborah Cristina Teixeira, Goulart Luís Ricardo, Cunha Thúlio Marquez, Espindola Foued Salmen, Vitorino Rui, Sabino-Silva Robinson

机构信息

Innovation Center in Salivary Diagnostic and Nanotheranostics, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia 38408-100, Minas Gerais, Brazil.

Faculty of Computing, Federal University of Uberlandia, Uberlandia 38408-100, Minas Gerais, Brazil.

出版信息

Diagnostics (Basel). 2023 Apr 12;13(8):1396. doi: 10.3390/diagnostics13081396.

Abstract

The blood diagnosis of diabetes mellitus (DM) is highly accurate; however, it is an invasive, high-cost, and painful procedure. In this context, the combination of ATR-FTIR spectroscopy and machine learning techniques in other biological samples has been used as an alternative tool to develop a non-invasive, fast, inexpensive, and label-free diagnostic or screening platform for several diseases, including DM. In this study, we used the ATR-FTIR tool associated with linear discriminant analysis (LDA) and a support vector machine (SVM) classifier in order to identify changes in salivary components to be used as alternative biomarkers for the diagnosis of type 2 DM. The band area values of 2962 cm, 1641 cm, and 1073 cm were higher in type 2 diabetic patients than in non-diabetic subjects. The best classification of salivary infrared spectra was by SVM, showing a sensitivity of 93.3% (42/45), specificity of 74% (17/23), and accuracy of 87% between non-diabetic subjects and uncontrolled type 2 DM patients. The SHAP features of infrared spectra indicate the main salivary vibrational modes of lipids and proteins that are responsible for discriminating DM patients. In summary, these data highlight the potential of ATR-FTIR platforms coupled with machine learning as a reagent-free, non-invasive, and highly sensitive tool for screening and monitoring diabetic patients.

摘要

糖尿病(DM)的血液诊断高度准确;然而,它是一种侵入性、高成本且痛苦的程序。在此背景下,衰减全反射傅里叶变换红外光谱(ATR-FTIR)与机器学习技术在其他生物样本中的结合已被用作一种替代工具,以开发一种用于包括糖尿病在内的多种疾病的非侵入性、快速、廉价且无标记的诊断或筛查平台。在本研究中,我们使用与线性判别分析(LDA)和支持向量机(SVM)分类器相关联的ATR-FTIR工具,以识别唾液成分的变化,将其用作2型糖尿病诊断的替代生物标志物。2型糖尿病患者唾液中2962 cm、1641 cm和1073 cm处的谱带面积值高于非糖尿病受试者。唾液红外光谱的最佳分类方法是支持向量机,在非糖尿病受试者和未控制的2型糖尿病患者之间,其灵敏度为93.3%(42/45),特异性为74%(17/23),准确率为87%。红外光谱的SHAP特征表明了负责区分糖尿病患者的唾液中脂质和蛋白质的主要振动模式。总之,这些数据突出了ATR-FTIR平台与机器学习相结合作为一种无试剂、非侵入性且高度灵敏的工具用于筛查和监测糖尿病患者的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd1d/10137088/f38abe433501/diagnostics-13-01396-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验