Saha Nandita, Kuehne Andre, Millward Jason M, Eigentler Thomas Wilhelm, Starke Ludger, Waiczies Sonia, Niendorf Thoralf
Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany.
Charité-Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.
Cancers (Basel). 2023 Apr 14;15(8):2303. doi: 10.3390/cancers15082303.
Thermal Magnetic Resonance (ThermalMR) is a theranostic concept that combines diagnostic magnetic resonance imaging (MRI) with targeted thermal therapy in the hyperthermia (HT) range using a radiofrequency (RF) applicator in an integrated system. ThermalMR adds a therapeutic dimension to a diagnostic MRI device. Focused, targeted RF heating of deep-seated brain tumors, accurate non-invasive temperature monitoring and high-resolution MRI are specific requirements of ThermalMR that can be addressed with novel concepts in RF applicator design. This work examines hybrid RF applicator arrays combining loop and self-grounded bow-tie (SGBT) dipole antennas for ThermalMR of brain tumors, at magnetic field strengths of 7.0 T, 9.4 T and 10.5 T. These high-density RF arrays improve the feasible transmission channel count, and provide additional degrees of freedom for RF shimming not afforded by using dipole antennas only, for superior thermal therapy and MRI diagnostics. These improvements are especially relevant for ThermalMR theranostics of deep-seated brain tumors because of the small surface area of the head. ThermalMR RF applicators with the hybrid loop+SGBT dipole design outperformed applicators using dipole-only and loop-only designs, with superior MRI performance and targeted RF heating. Array variants with a horse-shoe configuration covering an arc (270°) around the head avoiding the eyes performed better than designs with 360° coverage, with a 1.3 °C higher temperature rise inside the tumor while sparing healthy tissue. Our EMF and temperature simulations performed on a virtual patient with a clinically realistic intracranial tumor provide a technical foundation for implementation of advanced RF applicators tailored for ThermalMR theranostics of brain tumors.
热磁共振(ThermalMR)是一种治疗诊断概念,它在一个集成系统中,通过射频(RF)施加器,将诊断性磁共振成像(MRI)与热疗(HT)范围内的靶向热疗相结合。ThermalMR为诊断性MRI设备增加了治疗维度。对深部脑肿瘤进行聚焦、靶向的射频加热、精确的非侵入性温度监测以及高分辨率MRI是ThermalMR的特定要求,这些要求可以通过射频施加器设计中的新颖概念来实现。这项工作研究了用于脑肿瘤ThermalMR的、结合了环形天线和自接地蝴蝶结(SGBT)偶极天线的混合射频施加器阵列,磁场强度分别为7.0 T、9.4 T和10.5 T。这些高密度射频阵列增加了可行的传输通道数量,并为仅使用偶极天线所无法提供的射频匀场提供了额外的自由度,以实现卓越的热疗和MRI诊断。由于头部表面积较小,这些改进对于深部脑肿瘤的ThermalMR治疗诊断尤为重要。具有混合环形+SGBT偶极设计的ThermalMR射频施加器优于仅使用偶极天线和仅使用环形天线设计的施加器,具有卓越的MRI性能和靶向射频加热效果。马蹄形配置的阵列变体覆盖头部周围的弧形(270°),避开眼睛,其表现优于360°覆盖的设计,肿瘤内部温度升高1.3°C,同时使健康组织免受影响。我们在具有临床现实颅内肿瘤的虚拟患者上进行的电磁场和温度模拟,为实施针对脑肿瘤ThermalMR治疗诊断量身定制的先进射频施加器提供了技术基础。