Suppr超能文献

具有多视图集成判别和核共享扩张卷积的脑肿瘤分割网络

Brain Tumor Segmentation Network with Multi-View Ensemble Discrimination and Kernel-Sharing Dilated Convolution.

作者信息

Guan Xin, Zhao Yushan, Nyatega Charles Okanda, Li Qiang

机构信息

School of Microelectronics, Tianjin University, Tianjin 300072, China.

School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China.

出版信息

Brain Sci. 2023 Apr 11;13(4):650. doi: 10.3390/brainsci13040650.

Abstract

Accurate segmentation of brain tumors from magnetic resonance 3D images (MRI) is critical for clinical decisions and surgical planning. Radiologists usually separate and analyze brain tumors by combining images of axial, coronal, and sagittal views. However, traditional convolutional neural network (CNN) models tend to use information from only a single view or one by one. Moreover, the existing models adopt a multi-branch structure with different-size convolution kernels in parallel to adapt to various tumor sizes. However, the difference in the convolution kernels' parameters cannot precisely characterize the feature similarity of tumor lesion regions with various sizes, connectivity, and convexity. To address the above problems, we propose a hierarchical multi-view convolution method that decouples the standard 3D convolution into axial, coronal, and sagittal views to provide complementary-view features. Then, every pixel is classified by ensembling the discriminant results from the three views. Moreover, we propose a multi-branch kernel-sharing mechanism with a dilated rate to obtain parameter-consistent convolution kernels with different receptive fields. We use the BraTS2018 and BraTS2020 datasets for comparison experiments. The average Dice coefficients of the proposed network on the BraTS2020 dataset can reach 78.16%, 89.52%, and 83.05% for the enhancing tumor (ET), whole tumor (WT), and tumor core (TC), respectively, while the number of parameters is only 0.5 M. Compared with the baseline network for brain tumor segmentation, the accuracy was improved by 1.74%, 0.5%, and 2.19%, respectively.

摘要

从磁共振3D图像(MRI)中准确分割脑肿瘤对于临床决策和手术规划至关重要。放射科医生通常通过结合轴向、冠状和矢状视图的图像来分离和分析脑肿瘤。然而,传统的卷积神经网络(CNN)模型往往只使用单个视图的信息或逐个使用。此外,现有模型采用具有不同大小卷积核的多分支结构并行,以适应各种肿瘤大小。然而,卷积核参数的差异不能精确表征不同大小、连通性和凸性的肿瘤病变区域的特征相似性。为了解决上述问题,我们提出了一种分层多视图卷积方法,将标准3D卷积解耦为轴向、冠状和矢状视图,以提供互补视图特征。然后,通过整合三个视图的判别结果对每个像素进行分类。此外,我们提出了一种具有扩张率的多分支内核共享机制,以获得具有不同感受野的参数一致的卷积核。我们使用BraTS2018和BraTS2020数据集进行比较实验。所提出的网络在BraTS2020数据集上对于增强肿瘤(ET)、全肿瘤(WT)和肿瘤核心(TC)的平均Dice系数分别可达78.16%、89.52%和83.05%,而参数数量仅为0.5M。与脑肿瘤分割的基线网络相比,准确率分别提高了1.74%、0.5%和2.19%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a61/10136543/bd114a43531e/brainsci-13-00650-g001.jpg

相似文献

2
MTDCNet: A 3D multi-threading dilated convolutional network for brain tumor automatic segmentation.
J Biomed Inform. 2022 Sep;133:104173. doi: 10.1016/j.jbi.2022.104173. Epub 2022 Aug 20.
4
A lightweight hierarchical convolution network for brain tumor segmentation.
BMC Bioinformatics. 2022 Dec 13;22(Suppl 5):636. doi: 10.1186/s12859-022-05039-5.
5
Swin Unet3D: a three-dimensional medical image segmentation network combining vision transformer and convolution.
BMC Med Inform Decis Mak. 2023 Feb 14;23(1):33. doi: 10.1186/s12911-023-02129-z.
6
HMNet: Hierarchical Multi-Scale Brain Tumor Segmentation Network.
J Clin Med. 2023 Jan 9;12(2):538. doi: 10.3390/jcm12020538.
7
Fully connected network with multi-scale dilation convolution module in evaluating atrial septal defect based on MRI segmentation.
Comput Methods Programs Biomed. 2022 Mar;215:106608. doi: 10.1016/j.cmpb.2021.106608. Epub 2022 Jan 11.
8
Brain Tumor Segmentation From Multi-Modal MR Images via Ensembling UNets.
Front Radiol. 2021 Oct 21;1:704888. doi: 10.3389/fradi.2021.704888. eCollection 2021.
10
A multiple-channel and atrous convolution network for ultrasound image segmentation.
Med Phys. 2020 Dec;47(12):6270-6285. doi: 10.1002/mp.14512. Epub 2020 Oct 18.

本文引用的文献

1
A 3D Cross-Modality Feature Interaction Network With Volumetric Feature Alignment for Brain Tumor and Tissue Segmentation.
IEEE J Biomed Health Inform. 2023 Jan;27(1):75-86. doi: 10.1109/JBHI.2022.3214999. Epub 2023 Jan 4.
2
SwinBTS: A Method for 3D Multimodal Brain Tumor Segmentation Using Swin Transformer.
Brain Sci. 2022 Jun 17;12(6):797. doi: 10.3390/brainsci12060797.
4
RDAU-Net: Based on a Residual Convolutional Neural Network With DFP and CBAM for Brain Tumor Segmentation.
Front Oncol. 2022 Mar 2;12:805263. doi: 10.3389/fonc.2022.805263. eCollection 2022.
5
Whole Tumor Segmentation from Brain MR images using Multi-view 2D Convolutional Neural Network.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:4111-4114. doi: 10.1109/EMBC46164.2021.9631035.
6
Relax and focus on brain tumor segmentation.
Med Image Anal. 2022 Jan;75:102259. doi: 10.1016/j.media.2021.102259. Epub 2021 Oct 13.
7
MVFusFra: A Multi-View Dynamic Fusion Framework for Multimodal Brain Tumor Segmentation.
IEEE J Biomed Health Inform. 2022 Apr;26(4):1570-1581. doi: 10.1109/JBHI.2021.3122328. Epub 2022 Apr 14.
8
Brain Image Segmentation in Recent Years: A Narrative Review.
Brain Sci. 2021 Aug 10;11(8):1055. doi: 10.3390/brainsci11081055.
10
DFP-ResUNet:Convolutional Neural Network with a Dilated Convolutional Feature Pyramid for Multimodal Brain Tumor Segmentation.
Comput Methods Programs Biomed. 2021 Sep;208:106208. doi: 10.1016/j.cmpb.2021.106208. Epub 2021 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验