Suppr超能文献

扩张多尺度残差注意力(DMRA)U-Net:用于脑肿瘤分割的三维(3D)扩张多尺度残差注意力U-Net。

Dilated multi-scale residual attention (DMRA) U-Net: three-dimensional (3D) dilated multi-scale residual attention U-Net for brain tumor segmentation.

作者信息

Zhang Lihong, Li Yuzhuo, Liang Yingbo, Xu Chongxin, Liu Tong, Sun Junding

机构信息

College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China.

出版信息

Quant Imaging Med Surg. 2024 Oct 1;14(10):7249-7264. doi: 10.21037/qims-24-779. Epub 2024 Sep 19.

Abstract

BACKGROUND

The precise identification of the position and form of a tumor mass can improve early diagnosis and treatment. However, due to the complicated tumor categories and varying sizes and forms, the segregation of brain gliomas and their internal sub-regions is still very challenging. This study sought to design a new deep-learning network based on three-dimensional (3D) U-Net to address its shortcomings in brain tumor segmentation (BraTS) tasks.

METHODS

We developed a 3D dilated multi-scale residual attention U-Net (DMRA-U-Net) model for magnetic resonance imaging (MRI) BraTS. It used dilated convolution residual (DCR) modules to better process shallow features, multi-scale convolution residual (MCR) modules in the bottom encoding path to create richer and more comprehensive feature expression while reducing overall information loss or blurring, and a channel attention (CA) module between the encoding and decoding paths to address the problem of retrieving and preserving important features during the processing of deep feature maps.

RESULTS

The BraTS 2018-2021 datasets served as the training and evaluation datasets for this study. Further, the proposed architecture was assessed using metrics such as the dice similarity coefficient (DSC), Hausdorff distance (HD), and sensitivity (Sens). The DMRA U-Net model segments the whole tumor (WT), and the tumor core (TC), and the enhancing tumor (ET) regions of brain tumors. Using the suggested architecture, the DSCs were 0.9012, 0.8867, and 0.8813, the HDs were 28.86, 13.34, and 10.88 mm, and the Sens was 0.9429, 0.9452, and 0.9303 for the WT, TC, and ET regions, respectively. Compared to the traditional 3D U-Net, the DSC of the DMRA U-Net increased by 4.5%, 2.5%, and 0.8%, the HD of the DMRA U-Net decreased by 21.83, 16.42, and 10.00, the Sens of the DMRA U-Net increased by 0.4%, 0.7%, and 1.4% for the WT, TC, and ET regions, respectively. Further, the results of the statistical comparison of the performance indicators revealed that our model performed well generally in the segmentation of the WT, TC, and ET regions.

CONCLUSIONS

We developed a promising tumor segmentation model. Our solution is open sourced and is available at: https://github.com/Gold3nk/dmra-unet.

摘要

背景

精确识别肿瘤块的位置和形态可改善早期诊断与治疗。然而,由于肿瘤类别复杂且大小和形态各异,脑胶质瘤及其内部子区域的分割仍然极具挑战性。本研究旨在设计一种基于三维(3D)U-Net的新型深度学习网络,以解决其在脑肿瘤分割(BraTS)任务中的不足。

方法

我们为磁共振成像(MRI)BraTS开发了一种3D扩张多尺度残差注意力U-Net(DMRA-U-Net)模型。它使用扩张卷积残差(DCR)模块来更好地处理浅层特征,在底部编码路径中使用多尺度卷积残差(MCR)模块以创建更丰富、更全面的特征表达,同时减少整体信息损失或模糊,并在编码和解码路径之间使用通道注意力(CA)模块来解决在深度特征图处理过程中检索和保留重要特征的问题。

结果

BraTS 2018 - 2021数据集用作本研究的训练和评估数据集。此外,使用诸如骰子相似系数(DSC)、豪斯多夫距离(HD)和灵敏度(Sens)等指标对所提出的架构进行评估。DMRA U-Net模型对脑肿瘤的全肿瘤(WT)、肿瘤核心(TC)和增强肿瘤(ET)区域进行分割。使用所建议的架构,WT、TC和ET区域的DSC分别为0.9012、0.8867和0.8813,HD分别为28.86、13.34和10.88毫米,Sens分别为0.9429、0.9452和0.9303。与传统的3D U-Net相比,DMRA U-Net在WT、TC和ET区域的DSC分别提高了4.5%、2.5%和0.8%,HD分别降低了21.83、16.42和10.00,Sens分别提高了0.4%、0.7%和1.4%。此外,性能指标的统计比较结果表明,我们的模型在WT、TC和ET区域的分割中总体表现良好。

结论

我们开发了一种有前景的肿瘤分割模型。我们的解决方案已开源,可在以下网址获取:https://github.com/Gold3nk/dmra-unet。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3806/11485367/5bb616046e12/qims-14-10-7249-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验