Suppr超能文献

精氨酸代谢为沙门氏菌抵抗氧化应激提供能量。

Arginine Metabolism Powers Salmonella Resistance to Oxidative Stress.

机构信息

Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.

Department of Microbiology and Molecular Genetics, University of California Irvine School of Medicine, Irvine, California, USA.

出版信息

Infect Immun. 2023 Jun 15;91(6):e0012023. doi: 10.1128/iai.00120-23. Epub 2023 May 16.

Abstract

Salmonella invades host cells and replicates inside acidified, remodeled vacuoles that are exposed to reactive oxygen species (ROS) generated by the innate immune response. Oxidative products of the phagocyte NADPH oxidase mediate antimicrobial activity, in part, by collapsing the ΔpH of intracellular Salmonella. Given the role of arginine in bacterial resistance to acidic pH, we screened a library of 54 single-gene mutants in Salmonella that are each involved in, but do not entirely block, arginine metabolism. We identified several mutants that affected Salmonella virulence in mice. The triple mutant Δ, which is deficient in arginine biosynthesis, was attenuated in immunocompetent mice, but recovered virulence in phagocyte NADPH oxidase deficient mice. Furthermore, Δ Salmonella was profoundly susceptible to the bacteriostatic and bactericidal effects of hydrogen peroxide. Peroxide stress led to a larger collapse of the ΔpH in Δ mutants than occurred in wild-type Salmonella. The addition of exogenous arginine rescued Δ Salmonella from peroxide-induced ΔpH collapse and killing. Combined, these observations suggest that arginine metabolism is a hitherto unknown determinant of virulence that contributes to the antioxidant defenses of Salmonella by preserving pH homeostasis. In the absence of phagocyte NADPH oxidase-produced ROS, host cell-derived l-arginine appears to satisfy the needs of intracellular Salmonella. However, under oxidative stress, Salmonella must additionally rely on biosynthesis to maintain full virulence.

摘要

沙门氏菌侵入宿主细胞,并在酸性、重塑的空泡内复制,这些空泡会暴露于先天免疫反应产生的活性氧(ROS)中。吞噬细胞 NADPH 氧化酶的氧化产物通过破坏细胞内沙门氏菌的 ΔpH 值来介导抗菌活性,部分原因是通过破坏细胞内沙门氏菌的 ΔpH 值来介导抗菌活性。鉴于精氨酸在细菌抵抗酸性 pH 值中的作用,我们筛选了沙门氏菌中的 54 个单基因突变体文库,这些突变体各自参与但不完全阻断精氨酸代谢。我们鉴定出了几个影响沙门氏菌在小鼠中毒力的突变体。缺乏精氨酸生物合成的三重突变体 Δ 在免疫功能正常的小鼠中被减弱,但在吞噬细胞 NADPH 氧化酶缺陷型小鼠中恢复了毒力。此外,Δ 沙门氏菌对过氧化氢的抑菌和杀菌作用非常敏感。过氧化物应激导致 Δ 突变体中 ΔpH 值的崩溃比野生型沙门氏菌中更大。外源性精氨酸的添加挽救了 Δ 沙门氏菌免受过氧化物诱导的 ΔpH 值崩溃和杀伤。综合这些观察结果表明,精氨酸代谢是一个未知的毒力决定因素,通过维持 pH 平衡为沙门氏菌的抗氧化防御做出贡献。在没有吞噬细胞 NADPH 氧化酶产生的 ROS 的情况下,宿主细胞衍生的 l-精氨酸似乎满足了细胞内沙门氏菌的需求。然而,在氧化应激下,沙门氏菌必须另外依赖于 合成来维持完全的毒力。

相似文献

1
Arginine Metabolism Powers Salmonella Resistance to Oxidative Stress.
Infect Immun. 2023 Jun 15;91(6):e0012023. doi: 10.1128/iai.00120-23. Epub 2023 May 16.
2
The methylglyoxal pathway is a sink for glutathione in Salmonella experiencing oxidative stress.
PLoS Pathog. 2023 Jun 2;19(6):e1011441. doi: 10.1371/journal.ppat.1011441. eCollection 2023 Jun.
3
Control of redox balance by the stringent response regulatory protein promotes antioxidant defenses of Salmonella.
J Biol Chem. 2010 Nov 19;285(47):36785-93. doi: 10.1074/jbc.M110.160960. Epub 2010 Sep 17.
6
Oxidative stress activates transcription of Salmonella pathogenicity island-2 genes in macrophages.
J Biol Chem. 2022 Jul;298(7):102130. doi: 10.1016/j.jbc.2022.102130. Epub 2022 Jun 14.
7
Nitric oxide evokes an adaptive response to oxidative stress by arresting respiration.
J Biol Chem. 2008 Mar 21;283(12):7682-9. doi: 10.1074/jbc.M708845200. Epub 2008 Jan 15.

引用本文的文献

1
Commensal yeast promotes Salmonella Typhimurium virulence.
Nature. 2025 Sep 3. doi: 10.1038/s41586-025-09415-y.
2
Reactive oxygen species and reactive nitrogen species are double-edged swords in Salmonella infection.
Arch Microbiol. 2025 Aug 6;207(9):215. doi: 10.1007/s00203-025-04420-1.
3
Arginine at the host-pathogen interface.
Infect Immun. 2025 Aug 12;93(8):e0061224. doi: 10.1128/iai.00612-24. Epub 2025 Jul 3.
4
Arginine utilization in is essential for pneumonia pathogenesis and is regulated by virulence regulator GacA.
Infect Immun. 2025 May 13;93(5):e0057224. doi: 10.1128/iai.00572-24. Epub 2025 Apr 2.
6
-acetyl-L-ornithine deacetylase from and a ninhydrin-based assay to enable inhibitor identification.
Front Chem. 2024 Jul 11;12:1415644. doi: 10.3389/fchem.2024.1415644. eCollection 2024.
8
A genome-wide collection of barcoded single-gene deletion mutants in Salmonella enterica serovar Typhimurium.
PLoS One. 2024 Mar 7;19(3):e0298419. doi: 10.1371/journal.pone.0298419. eCollection 2024.
9
Anaerobic respiration of host-derived methionine sulfoxide protects intracellular Salmonella from the phagocyte NADPH oxidase.
Cell Host Microbe. 2024 Mar 13;32(3):411-424.e10. doi: 10.1016/j.chom.2024.01.004. Epub 2024 Feb 1.

本文引用的文献

1
Gre factors help Salmonella adapt to oxidative stress by improving transcription elongation and fidelity of metabolic genes.
PLoS Biol. 2023 Apr 4;21(4):e3002051. doi: 10.1371/journal.pbio.3002051. eCollection 2023 Apr.
2
Relevance of peroxiredoxins in pathogenic microorganisms.
Appl Microbiol Biotechnol. 2021 Aug;105(14-15):5701-5717. doi: 10.1007/s00253-021-11360-5. Epub 2021 Jul 14.
3
Increased Incidence of Antimicrobial-Resistant Nontyphoidal Salmonella Infections, United States, 2004-2016.
Emerg Infect Dis. 2021 Jun;27(6):1662-1672. doi: 10.3201/eid2706.204486.
5
Glycolytic reprograming in Salmonella counters NOX2-mediated dissipation of ΔpH.
Nat Commun. 2020 Apr 14;11(1):1783. doi: 10.1038/s41467-020-15604-2.
6
Regulation of arginine biosynthesis, catabolism and transport in Escherichia coli.
Amino Acids. 2019 Aug;51(8):1103-1127. doi: 10.1007/s00726-019-02757-8. Epub 2019 Jul 3.
7
Impact of ROS-Induced Damage of TCA Cycle Enzymes on Metabolism and Virulence of serovar Typhimurium.
Front Microbiol. 2019 Apr 24;10:762. doi: 10.3389/fmicb.2019.00762. eCollection 2019.
8
Salmonella and Reactive Oxygen Species: A Love-Hate Relationship.
J Innate Immun. 2019;11(3):216-226. doi: 10.1159/000496370. Epub 2019 Apr 3.
9
Arginine-deprivation-induced oxidative damage sterilizes .
Proc Natl Acad Sci U S A. 2018 Sep 25;115(39):9779-9784. doi: 10.1073/pnas.1808874115. Epub 2018 Aug 24.
10
Microbial antioxidant defense enzymes.
Microb Pathog. 2017 Sep;110:56-65. doi: 10.1016/j.micpath.2017.06.015. Epub 2017 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验