Suppr超能文献

肠杆菌科尿路致病性分支的精氨酸合成适应揭示了对尿路生境的调整。

Adaptation of Arginine Synthesis among Uropathogenic Branches of the Escherichia coli Phylogeny Reveals Adjustment to the Urinary Tract Habitat.

机构信息

Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA.

Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and Genome Institute of Singapore, Singapore

出版信息

mBio. 2020 Sep 29;11(5):e02318-20. doi: 10.1128/mBio.02318-20.

Abstract

Urinary tract infections (UTIs) are predominantly caused by uropathogenic (UPEC). UPEC pathogenesis requires passage through a severe population bottleneck involving intracellular bacterial communities (IBCs) that are clonal expansions of a single invading UPEC bacterium in a urothelial superficial facet cell. IBCs occur only during acute pathogenesis. The bacteria in IBCs form the founder population that develops into persistent extracellular infections. Only a small fraction of UPEC organisms proceed through the IBC cycle, regardless of the inoculum size. This dramatic reduction in population size precludes the utility of genomic mutagenesis technologies for identifying genes important for persistence. To circumvent this bottleneck, we previously identified 29 positively selected genes (PSGs) within UPEC and hypothesized that they contribute to virulence. Here, we show that 8 of these 29 PSGs are required for fitness during persistent bacteriuria. Conversely, 7/8 of these PSG mutants showed essentially no phenotype in acute UTI. Deletion of the PSG leads to arginine auxotrophy. Relative to the other genes, in the B2 clade (which comprises most UPEC strains) of has diverged from in other clades. Replacement of in a UPEC strain with a non-UPEC allele complemented the arginine auxotrophy but not the persistent bacteriuria defect, showing that the UPEC allele contributes to persistent infection. These results highlight the complex roles of metabolic pathways during infection and demonstrate that evolutionary approaches can identify infection-specific gene functions downstream of population bottlenecks, shedding light on virulence and the genetic evolution of pathogenesis. Uropathogenic (UPEC) is the most common cause of human urinary tract infection (UTI). Population bottlenecks during early stages of UTI make high-throughput screens impractical for understanding clinically important later stages of UTI, such as persistence and recurrence. As UPEC is hypothesized to be adapted to these later pathogenic stages, we previously identified 29 genes evolving under positive selection in UPEC. Here, we found that 8 of these genes, including (which is involved in arginine biosynthesis), are important for persistence in a mouse model of UTI. Deletion of and other arginine synthesis genes resulted in (i) arginine auxotrophy and (ii) defects in persistent UTI. Replacement of a B2 clade with a non-B2 clade complemented arginine auxotrophy, but the resulting strain remained attenuated in its ability to cause persistent bacteriuria. Thus, may have a second function during UTI that is not related to simple arginine synthesis. This study demonstrates how variation in metabolic genes can impact virulence and provides insight into the mechanisms and evolution of bacterial virulence.

摘要

尿路感染(UTI)主要由尿路致病性大肠杆菌(UPEC)引起。UPEC 的发病机制需要通过一个严重的种群瓶颈,涉及到细菌细胞内群落(IBC),即单个入侵的 UPEC 细菌在尿路上皮浅层细胞中的克隆扩张。IBC 仅在急性发病期间发生。IBC 中的细菌形成创始种群,发展为持续的细胞外感染。无论接种物大小如何,只有一小部分 UPEC 生物能够通过 IBC 循环。这种种群数量的急剧减少排除了基因组诱变技术用于鉴定与持续性相关的重要基因的可能性。为了克服这个瓶颈,我们之前在 UPEC 中鉴定了 29 个正选择基因(PSG),并假设它们有助于毒力。在这里,我们表明这 29 个 PSG 中的 8 个在持续性菌尿期间对适应性至关重要。相反,这 8 个 PSG 突变体在急性 UTI 中几乎没有表现出表型。PSG 的缺失导致精氨酸营养缺陷。与其他基因相比,B2 分支(包含大多数 UPEC 菌株)中的 与其他分支中的 已经分化。用非 UPEC 等位基因替换 UPEC 菌株中的 可补充精氨酸营养缺陷,但不能补充持续性菌尿缺陷,表明 UPEC 等位基因有助于持续性感染。这些结果突出了代谢途径在感染过程中的复杂作用,并表明进化方法可以识别种群瓶颈下游与感染特异性相关的基因功能,为毒力和发病机制的遗传进化提供了线索。尿路致病性大肠杆菌(UPEC)是人类尿路感染(UTI)最常见的原因。UTI 早期阶段的种群瓶颈使得高通量筛选对于理解 UTI 的后期临床重要阶段(如持续性和复发)不切实际。由于假设 UPEC 适应了这些后期的发病阶段,我们之前在 UPEC 中鉴定了 29 个在正选择下进化的基因。在这里,我们发现这 29 个基因中的 8 个,包括参与精氨酸生物合成的 ,对于 UTI 小鼠模型中的持续性至关重要。缺失 和其他精氨酸合成基因导致(i)精氨酸营养缺陷和(ii)持续性 UTI 缺陷。用非 B2 分支的 替换 B2 分支的 可补充精氨酸营养缺陷,但由此产生的菌株在引起持续性菌尿的能力方面仍然减弱。因此, 在 UTI 期间可能具有与简单精氨酸合成无关的第二个功能。这项研究展示了代谢基因的变异如何影响毒力,并为细菌毒力的机制和进化提供了深入的了解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7d/7527732/fd24c660a725/mBio.02318-20-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验