Liu Jiahao, Fan Jiajing, Zhong Zirui, Qiu Hui, Xiao Jianbiao, Zhou Yong, Zhu Zhen, Dai Guanghai, Wang Ning, Liu Qingsong, Xie Yuxiang, Liu Hongduo, Chang Liang, Zhou Jun
IEEE Trans Biomed Circuits Syst. 2023 Oct;17(5):952-967. doi: 10.1109/TBCAS.2023.3276782. Epub 2023 Nov 21.
Wearable intelligent health monitoring devices with on-device biomedical AI processor can be used to detect the abnormity in users' biomedical signals (e.g., ECG arrythmia classification, EEG-based seizure detection). This requires ultra-low power and reconfigurable biomedical AI processor to support battery-supplied wearable devices and versatile intelligent health monitoring applications while achieving high classification accuracy. However, existing designs have issues in meeting one or more of the above requirements. In this work, a reconfigurable biomedical AI processor (named BioAIP) is proposed, mainly featuring: 1) a reconfigurable biomedical AI processing architecture to support versatile biomedical AI processing. 2) an event-driven biomedical AI processing architecture with approximate data compression to reduce the power consumption. 3) an AI-based adaptive-learning architecture to address patient-to-patient variation and improve the classification accuracy. The design has been implemented and fabricated using a 65nm CMOS process technology. It has been demonstrated with three typical biomedical AI applications, including ECG arrythmia classification, EEG-based seizure detection and EMG-based hand gesture recognition. Compared with the state-of-the-art designs optimized for single biomedical AI tasks, the BioAIP achieves the lowest energy per classification among the designs with similar accuracy, while supporting various biomedical AI tasks.
配备片上生物医学人工智能处理器的可穿戴智能健康监测设备可用于检测用户生物医学信号中的异常情况(例如,心电图心律失常分类、基于脑电图的癫痫检测)。这需要超低功耗且可重构的生物医学人工智能处理器,以支持由电池供电的可穿戴设备和多功能智能健康监测应用,同时实现高分类准确率。然而,现有设计在满足上述一项或多项要求方面存在问题。在这项工作中,提出了一种可重构生物医学人工智能处理器(名为BioAIP),其主要特点包括:1)一种可重构生物医学人工智能处理架构,以支持多功能生物医学人工智能处理。2)一种具有近似数据压缩功能的事件驱动生物医学人工智能处理架构,以降低功耗。3)一种基于人工智能的自适应学习架构,以解决患者个体差异问题并提高分类准确率。该设计已采用65纳米互补金属氧化物半导体工艺技术进行实现和制造。它已通过三种典型的生物医学人工智能应用得到验证,包括心电图心律失常分类、基于脑电图的癫痫检测和基于肌电图的手势识别。与针对单一生物医学人工智能任务进行优化的现有最先进设计相比,BioAIP在具有相似准确率的设计中实现了最低的每次分类能耗,同时支持各种生物医学人工智能任务。